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Abstract

Understanding the sources of heterogeneity in the health effects of environmental expo-
sure is critical for optimal policy design. Differential access to health care is commonly
cited as a potential source of such heterogeneity. We test this hypothesis in a causal
framework by combining random year-to-year fluctuations in local temperatures with
variation in access to primary care services resulting from the idiosyncratic roll-out of
Community Health Centers (CHCs) across US counties in the 1960s and 1970s. We
find that the improved access to primary care services provided by CHCs moderates
the heat-mortality relationship by 14.2%, but we find little evidence that CHC access
mitigates the harmful effects of cold. In a supplementary analysis we find evidence that
acute care – in contrast to primary care – may be especially effective at mitigating the
cold-mortality relationship. Our results suggest that differential access to health care
does contribute to observed heterogeneity in environmental health damages, and that
improving access to primary care may be a useful means of mitigating harm from a
warming climate.
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1 Introduction

The effects of exposure to adverse environmental conditions are heterogeneous across popula-

tions, with disadvantaged groups typically facing greater damages.1 While this heterogeneity

has been documented in a wide variety of settings, the underlying source of heterogeneity

is rarely well understood. Differential access to health care is often posited as a potential

source of such heterogeneity. We use a causal framework to test whether differential access

to health care explains heterogeneity in the health impacts of extreme temperature exposure.

Specifically, we test whether increased access to primary care services through Community

Health Centers (hereafter, “CHCs”) moderates the relationship between temperatures (both

hot and cold) and mortality.

Understanding the sources of heterogeneity in environmental damages is important for the

design of optimal policy as it informs the allocation of the “marginal dollar”. For example,

in the context of climate change, it may be more cost effective to invest in adaptation (e.g.,

health care) rather than mitigation (e.g., low carbon technology). In a recent review, Hsiang

et al. (2019) discuss the importance of precisely identifying the sources of heterogeneity

in environmental damages, but also the difficulty of doing so. While causally estimating

average marginal damages requires exogenous variation in environmental exposure, causally

identifying heterogeneity in marginal damages requires exogenous variation in environmental

exposure and in the source of heterogeneity.

We leverage two sources of exogenous variation (CHC access and temperature) that have

each been analyzed rigorously in prior studies. Bailey and Goodman-Bacon (2015) study the

initial round of CHC establishments, which took place from 1965 to 1974. During this period,

Bailey and Goodman-Bacon (2015) show that the timing of CHC establishment in a county

was effectively random due to a period known as the “great administrative confusion” at

the federal agency which allocated CHC funding. Bailey and Goodman-Bacon (2015) find

that CHCs reduced all-cause mortality in the years after initial establishment, that these

ameliorative effects grew over time, and that the reductions in mortality rates were driven

primarily by older adults and cardiovascular/cerebrovascular causes of death. We unite the

approach of Bailey and Goodman-Bacon (2015) with the panel-fixed effects methodology

that has been widely used to identify causal impacts of temperature on a variety of outcomes

including mortality (e.g., Deschênes and Greenstone, 2011; Dell et al., 2014).

1For example: Chay and Greenstone (2003) and Currie and Walker (2011) each find larger health effects
of air pollution among African Americans versus whites. Arceo et al. (2016) find that the effects of carbon
monoxide on infant mortality are an order of magnitude larger in Mexico versus the US. Using sub-national
data from 41 countries, Carleton et al. (2018) find that the effects of high temperatures on mortality are
consistently larger for poorer populations.
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Our analysis begins by successfully replicating the central results of both Bailey and

Goodman-Bacon (2015) and prior studies on the temperature-mortality relationship (e.g.,

Deschênes and Greenstone, 2011) within a single model. We then construct a model to

estimate the interaction between access to health care and temperature. Conceptually, we

apply a difference-in-differences (henceforth, “DiD”) design to estimate the effect of access

to health care on the temperature-mortality relationship. Our interaction models allow for

time-invariant differences in the temperature-mortality relationship across treatment groups

(analogous to including a treatment group indicator or group fixed effects in a standard

DiD), and group-invariant differences in the temperature-mortality relationship over time

(analogous to a post-treatment indicator or time fixed effects in a standard DiD).2

We find that the presence of a CHC in a county mitigated the relationship between hot

temperatures and all-cause mortality by approximately 14.2%. We find little evidence that

CHCs affected the relationship between cold and all-cause mortality, though our estimates do

suggest that CHCs mitigated cold-induced respiratory deaths. Given the services provided by

CHCs (primary care, rather than direct treatment for acute conditions), our results suggest

that access to primary care is more important for preventing deaths due to heat than cold.

Deaths triggered by heat and cold are driven by distinct mechanisms, and it is plausible

that different types of health care may differentially impact heat- versus cold-related mortal-

ity. For example, cold-related mortality may be more sensitive to health care of a different

type than was provided by CHCs. In a supplementary analysis, we leverage hospital deseg-

regation in the American South as a source of variation in access to acute care (i.e., hospital

care) and find that this type of care was especially effective at mitigating cold-related mor-

tality. Taken together, these findings imply that primary care is more effective at reducing

heat-related deaths whereas acute care is more effective at reducing cold-related deaths. We

caution, however, that this conclusion is only suggestive given that the different settings in

the CHC and desegregation analyses make direct comparisons difficult.

In general, our results demonstrate that increased access to health care can indeed miti-

gate environmental health damages. We therefore conclude that differential access to care is

one driver behind the oft-noted differences in environmental damages across rich and poor

populations. The different effects for heat- versus cold-related mortality imply that the po-

tential for health care to mitigate environmental damages depends crucially on the specific

nature of the damages and the health care intervention under consideration. Finally, our

main finding – that improved access to primary care reduced the impacts of heat on mor-

tality – suggests that increasing access to primary care may serve as a successful adaptive

2Analogous controls are used by Hornbeck and Keskin (2014) in the estimation of how aquifer access
mitigates the impacts of drought on agricultural yields.
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mechanism for climate change.

This paper contributes to an active literature investigating heterogeneity in environ-

mental damages. Several recent papers consider how income or nutrition supplementation

programs contribute to heterogeneity in damages from environmental shocks in developing

world contexts.3 Most closely related to our work, however, is a set of papers that explic-

itly consider heterogeneity in the effects of temperature on mortality: Barreca et al. (2016);

Burgess et al. (2017); Banerjee and Maharaj (2018); Cohen and Dechezleprêtre (2018).

Burgess et al. (2017) use exogenous variation in bank access to show that a median

increase in bank access mitigated the heat-mortality relationship in rural India by approxi-

mately 75%. These results imply that bank access was able to smooth temperature-induced

shocks to agricultural income. Banerjee and Maharaj (2018) investigate whether two Indian

policies mitigate the impact of heat on infant mortality: a workfare program (NREGA) and

a health worker program. They estimate that NREGA has no mitigating impact, whereas

9 months of pre-natal exposure to the health worker program mitigates the heat-infant-

mortality relationship by over 80%. These estimates, however, do not account for potential

pre-existing differences in the heat-infant-mortality relationship between treatment and con-

trol states and thus the estimates may partially reflect such differences.4

Cohen and Dechezleprêtre (2018) study the relationship between temperature and mortal-

ity in Mexico over the period 1998-2010. They find that while both cold and hot temperatures

are associated with increases in mortality, the effects of cold (days with mean temperature

<50◦F) are much stronger. The authors then use a matching strategy to test whether enroll-

ment in Mexico’s national health insurance program – Seguro Popular – provides protective

benefits against temperature-related mortality. They estimate that enrollment in Seguro

Popular mitigates the mortality effects of a cold day by 35%, and argue that any selection

on unobservables likely attenuates this estimate.

Our setting is most similar to that studied by Barreca et al. (2016), in which the au-

thors demonstrate a “remarkable” decline in the relationship between high temperatures and

3Fetzer (2014) demonstrates that access to a workfare program in India (National Rural Employment
Guarantee Act - “NREGA”) successfully mitigates the relationship between agriculture-affecting rainfall
shocks and violence; relatedly, Sarsons (2015) finds no evidence that dam (i.e., irrigation) access mitigates
the rainfall-violence relationship in India. Garg et al. (2018) find that access to NREGA mitigates the
relationship between high temperatures and test scores by approximately 38% in India. Adhvaryu et al.
(2018) estimate that a conditional cash transfer program in Mexico (PROGRESA) mitigates the disadvantage
caused by early life rainfall shocks by at least 20%. Garg et al. (2019) find that the same cash transfers from
PROGRESA reduce the heat-induced homicide rate in Mexico. Gunnsteinsson et al. (2018) estimate that
Vitamin A supplementation fully mitigates the effect of in-utero exposure to a tornado on infant/childhood
growth outcomes in Bangladesh.

4This may be a particularly important point given that the roll-out of the health worker program studied
by Banerjee and Maharaj (2018) was explicitly non-random, as it was first implemented in Indian states
identified as laggards in a variety of public health measures (Rao, 2014).
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mortality over the course of the 20th century in the US, which was particularly dramatic

during a period of rapid expansion in air conditioning technology (henceforth, “AC”) after

1960. In Panel A of Figure 1, we use our own data to show that this decline was remark-

able indeed: between 1959 and 1988, the heat-mortality relationship fell by 70%. Notably,

the cold-mortality relationship also declined by 60%. Barreca et al. (2016) estimate the

interaction between temperature and AC penetration and note that their estimates imply

that the diffusion of AC technology can explain the entire decline in the heat-mortality re-

lationship. They also estimate interactions between temperature and the number of doctors

per capita and electrification rates, but find no mitigating impacts. As the authors note,

quasi-experimental variation in AC penetration or the other potential modifiers does not

exist, and thus they cannot rule out the possibility that other factors evolving simultaneous

to the diffusion of AC technology could have contributed to the declining heat-mortality

relationship.

The period of rapid expansion in AC technology coincided with substantial increases in

access to – and spending on – health care. For instance, Panel B of Figure 1 shows the

roll-out of the CHC program that we examine, which began in 1965. Furthermore, several

other large public programs (e.g., Medicare and Medicaid) were implemented in the mid-

1960s. Figure 1 shows that government health expenditures as a share of GDP more than

tripled over our study period, 1959-1988. In principle, any of the expansions in access to

care in this period could have mitigated health impacts of temperature exposures. We focus

on the CHC program because of its credibly exogenous implementation and because Bailey

and Goodman-Bacon (2015) have shown that the program had large mortality effects on the

same population and causes of death that we expect to be impacted by exposure to extreme

temperatures.

While Barreca et al. (2016), Banerjee and Maharaj (2018), and Cohen and Dechezleprêtre

(2018) each provide an estimate of how access to health care mitigates the temperature-

mortality relationship, to the best of our knowledge our paper is the first to use a natural

experiment in access to health care to address this question. Our focus on causally identifying

whether access to health care mitigates environmental damages is our primary contribution.5

5Our paper also contributes to a broader literature in empirical economics aimed at identifying interaction
effects by leveraging exogenous variation in multiple treatments. This strategy is particularly prominent in
the literature on “dynamic complementarities” in early childhood development (Almond and Mazumder,
2013; Adhvaryu et al., 2018; Johnson and Jackson, 2019; Rossin-Slater and Wüst, 2018). Furthermore, our
paper contributes to the rapidly expanding literature on the effects of temperature and climate on health
in general. To date, this literature has identified such impacts across a wide variety of outcomes including:
mortality (Barreca et al., 2016; Heutel et al., 2017), morbidity (White, 2017; Karlsson and Ziebarth, 2018),
mental health (Mullins and White, 2019) and occupational health (Dillender, 2019), and across settings
representing over half of the world’s population (Carleton et al., 2018).
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The remainder of this paper proceeds as follows: Section 2 provides a brief conceptual

framework and background information on Community Health Centers. Section 3 outlines

the details of our data and empirical approach. Section 4 presents our main results and

a series of robustness checks. Section 5 provides a discussion of the mechanisms and the

supplementary analysis examining Southern hospital desegregation, and Section 6 concludes.

2 Background & Conceptual Framework

2.1 Conceptual Framework

The conceptual goal of this paper can be illustrated using a slightly modified version of the

framework presented by Graff-Zivin and Neidell (2013), which considered how environmental

conditions affect health and human capital by building on the Grossman (1972) model of

health production. Suppose that mortality (M) is a function of weather (W ), access to

pre-exposure primary/preventative care (P ), and access to post-exposure acute treatment

(T ). Following Graff-Zivin and Neidell (2013), we make a distinction between the ultimate

health outcome of interest (M) and an illness episode (φ), yielding:

M = f (T, φ(W,P )) (1)

The purpose of this paper is to consider how the effect of weather on mortality (i.e.,
∂M
∂W

) depends on access to health care (i.e., the levels of P and T ). The formulation of the

mortality production function in Equation (1) highlights an explicit distinction between the

roles of access to preventative care versus acute treatment (a distinction also made elsewhere,

including Cutler (2001)). Preventative care (P ) occurs prior to exposure and affects mortality

by modifying the effect of weather on the probability of having an illness episode (e.g., a

heart attack), whereas acute treatment (T ) occurs after exposure and alters the probability

of death conditional on experiencing an illness episode.

Because CHCs provided preventative care rather than acute treatment (a claim supported

in Section 2.2), the central analysis of this paper estimates how exogenously improved access

to preventative care modifies the effect of temperature on mortality: ∂2M
∂W∂P

.6 The distinction

between preventative care and acute treatment is important for interpreting the mecha-

nisms underlying our estimates. For example, we do not expect that CHCs mitigate ∂M
∂W

by

providing immediate treatment for specific temperature-induced illness episodes (e.g., heat

stroke) because CHCs did not provide such acute (or emergency) care. Instead, we expect

6Hsiang et al. (2019) note that identifying sources of heterogeneity in environmental damages requires
empirical identification of a second-order derivative of this form.
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that CHCs improve an individual’s health stock through preventiative care and better man-

agement of chronic health conditions, thereby decreasing the likelihood that temperature

exposure induces an illness episode.

We return to this framework in Section 5 to discuss the mechanisms underlying our

estimates and present a supplemental analysis with the goal of estimating ∂2M
∂W∂T

.

2.2 What Are CHCs and How Were They Implemented?

The CHC program exists today but has changed substantially since its initial implementa-

tion during the period we analyze. During our study period, CHCs were networks of clinics

that provided primary care services on an outpatient basis. Taylor (2004) notes that CHC

funding was explicitly contingent on the provision of “comprehensive primary health care

services”, and Bailey and Goodman-Bacon (2015) use the Survey of Health Services Uti-

lization and Expenditures to show that the proportion of the relevant population (older,

low-income adults) reporting a “regular source of care” increased by 23% following CHC es-

tablishment. CHCs did not provide treatment for emergent conditions (Taylor, 2004). This

is again supported by the analysis of Bailey and Goodman-Bacon (2015), who “show that

CHCs had no measurable impact on accident-related mortality in any specification, which is

consistent with their provision of primary (but not emergency) care”. In the terminology of

Equation (1), this suggests that CHCs significantly increased P , but not T .

CHCs provided services at little or no cost to patients, served patients who were unin-

sured, underinsured, or low-income, and typically provided home health care or transporta-

tion to appointments (Bailey and Goodman-Bacon, 2015).

The CHC program was initiated in 1965 as part of President Lyndon Johnson’s “un-

conditional war on poverty”. It was a grant reward program administered by the Office

of Economic Opportunity (“OEO”), which provided direct grants to local organizations for

War-on-Poverty programs. Like Bailey and Goodman-Bacon (2015), we rely on the chaotic

period known as the “great administrative confusion” at the OEO as the source of quasi-

random variation in CHC establishments (and thus access). OEO funding decisions during

this period (1965-1974) were characterized as “wild”, and Bailey and Goodman-Bacon (2015)

show little association between the timing of CHC establishment and pre-treatment county

characteristics, mortality rates, changes in mortality rates, funding for other OEO programs,

or local expansions in hospital capacity. Following Bailey and Goodman-Bacon (2015), we

only use variation from the first wave of CHC establishments which took place between 1965

and 1974. The program was fundamentally altered by the 1975 Special Health Revenue

Sharing Act which made CHC establishments much less plausibly exogenous and focused
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them in sparsely-populated rural settings; Bailey and Goodman-Bacon (2015) also argue

that these later CHCs likely had much smaller impacts on mortality.

2.3 How Can CHCs Affect Mortality and Temperature-Related

Mortality?

CHCs principally provided access to primary and preventative health care, and Bailey and

Goodman-Bacon (2015) note that CHCs could have reduced mortality among older adults

through several channels. CHCs may have increased early detection, awareness, and treat-

ment of chronic yet manageable conditions like hypertension. CHCs provided free or reduced-

cost pharmaceuticals for the management of such conditions (e.g., beta blockers for hyper-

tension), making it easier for patients to maintain medication regimens. CHC access may

have reduced mortality indirectly by increasing awareness of Medicaid and Medicare. It is

also possible that CHCs could have reduced emergency department crowding by reducing

usage for non-emergent conditions.

Given the type of care provided by CHCs, they might be expected to increase the health

stock of served populations, which could in turn increase population resilience to health

shocks of many kinds including exposures to extreme temperatures. For example, Bailey

and Goodman-Bacon (2015) show that CHCs led to better hypertension management. Hy-

pertension is a risk factor for cardiovascular disease (e.g., heart attack) and cerebrovascular

disease (e.g., stroke), both of which are common causes of death triggered by extreme tem-

perature exposure.7 Bailey and Goodman-Bacon (2015) show that CHCs reduced mortality

due to both cardiovascular and cerebrovascular disease, suggesting a means by which CHCs

might impact mortality triggered by extreme temperatures.

We also note that CHCs primarily benefitted the low-income population; to the extent

that low-income individuals were also more temperature exposed (e.g., due to working con-

ditions or lower levels of access to heating and air conditioning), interaction effects are even

more plausible. We now turn to testing for such interactions empirically.

7We find that cardiovascular and cerebrovascular disease account for approximately 50% of all cold-related
deaths and 71% of all heat-related deaths in the pre-CHC period. To arrive at these figures, we limit the
sample to 1959-1964 and calculate the effects of days <40◦F and >80◦F, for both all-cause mortality and car-
diovascular/cerebrovascular mortality. We find that one day <40◦F increases the all-cause mortality rate by
0.241 (per 100,000 population), the cardiovascular mortality rate by 0.0905 and the cerebrovascular mortality
rate by 0.0311. The proportion of cold-related mortality attributable to cardiovascular and cerebrovascular
causes is the ratio (0.0905+0.0311)/0.241. One day >80◦F increases the all-cause mortality rate by 0.339,
the cardiovascular mortality rate by 0.169, and the cerebrovascular mortality rate by 0.0726.
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3 Data and Empirical Strategy

3.1 Data

Our main analysis brings together multiple data sources at the county-year-month level

for the period 1959-1988. This sample matches that used by Bailey and Goodman-Bacon

(2015), which covers the first wave of CHC establishments in 114 counties between 1965-

1974 and the subsequent 14 year period.8 Data on CHC establishment dates were provided

by Martha Bailey and Andrew Goodman-Bacon and were collected from primary sources.

County-year-month data on mortality is derived from the National Vital Statistics System

mortality files. Age-adjusted mortality rates per 100,000 population are calculated using

county-year population data from the U.S. Census and National Cancer Institute (SEER

Program). County-year-month temperature and precipitation measures are derived from

data constructed by the PRISM Climate Group and aggregated by Schlenker and Roberts

(2009). Temperature is measured as the mean daily temperature in degrees Fahrenheit

(calculated as the mean of the daily minimum and maximum). State-year data on air

conditioning penetration rates are derived from U.S. Census data following Barreca et al.

(2016). Additional details on the data are provided throughout this section, but for greater

detail on data sources and construction, see the Data Appendix. Summary statistics for

mortality, climate variables, and air conditioning are provided for all counties in our sample,

and separately for CHC and non-CHC counties in Table 1.

3.2 Empirical Strategy

3.2.1 Replication Model

We begin by replicating estimates of both CHC access and temperature on mortality in a sin-

gle econometric model. We primarily follow the specification used by Bailey and Goodman-

Bacon (2015). Their model includes a rich set of controls, making it well-suited for identifying

ambient temperature effects in addition to CHC impacts. Our model is distinct from that of

Bailey and Goodman-Bacon (2015) in two ways: (1) our model is estimated at the monthly

rather than annual level, and thus some of the fixed effects are adjusted accordingly, and

(2) our model includes climatic variables. Our unit of analysis is the county-year-month.

Equation (2) describes the model, with subscripts c, y, m, and u representing county, year,

calendar month, and urban group (five categories of 1960 urbanicity).

8CHCs were also established in New York City, Los Angeles and Chicago. We follow Bailey and Goodman-
Bacon (2015) and omit these from our analytical sample given their large size and the disproportionate weight
they would receive in the regressions.
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AMRcym = γCHCt≥0
cy + πg(Tempcym) + βXcym + δsy + δcm + δuy + δym + εcym (2)

The outcome of interest is AMRcym: the age-adjusted mortality rate in county c, year y

and month m.9 The first coefficient of interest is γ, where CHCt≥0
cy is an indicator equal to one

in the years after CHC establishment in a particular county (superscripts indicate years rela-

tive to establishment; t = 0 represents the year in which a CHC was established). Additional

models are presented in which CHCt≥0
cy is replaced with a set of binned event-study indica-

tors for periods relative to the year of CHC establishment: CHCt≤−2
cy ,CHC0≤t≤4

cy ,CHC5≤t≤9
cy ,

and CHCt≥10
cy (t = −1 is the reference group). The binned specification follows the main

specification of Bailey and Goodman-Bacon (2015) and allows for the assessment of differ-

ential pre-treatment trends and dynamic treatment effects. An important point here is that

both mortality and CHC access are measured at the county level. Because only a portion of

residents in a given county will utilize the services provided by CHCs, our estimates must

be interpreted as intent-to-treat estimates.

The second coefficient of interest is π, where g(Tempcym) is some function of mean daily

temperatures in a given county-year-month. In the main specification, g(Tempcym) is a vec-

tor of temperature bins measuring the number of days with mean temperatures within a

given range. For example, Temp<40
cym and Temp>80

cym represent the number of days below 40◦F

and above 80◦F, respectively. We estimate models that include only these two temperature

variables, and models that include these in addition to intermediate 10◦F bins (i.e., Temp<40
cym,

Temp40−50
cym , Temp50−60

cym , Temp70−80
cym , and Temp>80

cym). The omitted temperature category in the

two-bin model is days with mean temperature between 40◦F and 80◦F, while the omitted

temperature category in the five-bin model is days with mean temperature between 60◦F

and 70◦F. The simpler models are sometimes preferred due the fact that fewer parameters

need to be estimated, which is especially important for the interaction models to follow. We

also estimate models in which g(Tempcym) represents a third-order polynomial in tempera-

ture; these models allow for nonlinear impacts of temperature across the entire temperature

9Age-adjusted mortality rates hold fixed the age distribution of the population of a given county such
that changes in the AMR reflect changes in the risk of death rather than changes in the age composition of
the sample. The AMR for county c at time t is calculated as a weighted average of age-specific mortality
rates (ASMR) for county c at time t and 5-year age group a. For concreteness, define ASMRcta = 100, 000×
Deathscta
Popcta

, and define AMRct =
∑18

a=1 sca×ASMRcta, where sca is the 1960 share of the population in 5-year
age group a. Age-adjusting refers to holding the population age share sca fixed.
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distribution, but only require estimating three parameters.10

The remaining controls (Xcy, δsy, δcm, δuy, δym) are equivalent to the controls used in Bailey

and Goodman-Bacon (2015), but adapted to the monthly time scale and additionally include

controls for precipitation.11 Xcym is a vector of county-level time-varying covariates.12 δsy are

state-by-year fixed effects and δuy are urban-group-by-year fixed effects.13 δcm are county-

by-month fixed effects which are used in place of the county fixed effects in Bailey and

Goodman-Bacon (2015) and control for both time-invariant differences across counties and

local seasonality. This is potentially important because both temperature and mortality

exhibit substantial seasonality, which may differ between regions. δym are year-by-month

fixed effects which absorb any nationwide trends or shocks.

Standard errors are two-way clustered at both the county and year-by-month levels

(Cameron et al., 2011). County clustering allows for arbitrary within-county serial correlation

and year-by-month clustering allows for arbitrary spatial correlation within a year-month.

All regressions are weighted by 1960 county populations.

Identification of γ in Equation (2) requires the usual parallel trends assumption for a

DiD design: in the absence of treatment, trends in mortality would have been similar be-

tween counties in which CHCs were established at different dates or not at all. Bailey and

Goodman-Bacon (2015) present substantial evidence supporting this identifying assumption,

and we refer the inquisitive reader to their work for details. That said, we do present some

of this evidence (e.g., pre-treatment effects in the event studies) for comparison with the

interaction models that follow.

Identification of π in Equation (2) requires the assumption that within a given county-

month, year-to-year weather realizations are uncorrelated with other unobserved determi-

nants of mortality. Conditional on county-by-month fixed effects and other controls, year-to-

year weather realizations are generally considered to be random, satisfying this assumption.

10We follow Carleton et al. (2018) in constructing these polynomials. Specifically, we first construct a
third-order polynomial in temperature at the daily level, and then sum these three polynomial terms across
the month. These models therefore exploit daily variation in local temperatures in models where the unit
of observation is at the monthly level (i.e., similar to the temperature bin approach). In interpreting the
estimates, we test whether the effect of an additional day at a given temperature is different from an additional
day at 65◦F. Higher order polynomials were considered, and the results were qualitatively unchanged.

11Following Barreca et al. (2016), precipitation controls are indicators for whether total monthly precipi-
tation was below the 25th percentile or above the 75th percentile of the county-month distribution.

12The time-varying covariates include precipitation controls and variables obtained from Bailey and
Goodman-Bacon (2015). These include hospital beds per capita, hospitals per capita, public assistance
transfers, and retirement transfers. Also included are annual time trends interacted with the levels of each of
the following county characteristics measured in 1960: percent with income under $3,000, percent non-white,
percent rural, percent urban, and number of physicians.

13The urban-group-by-year fixed effects are year dummies interacted with five categories of a county’s
1960 population share in urban areas.
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We again refer readers to the work of others for a more detailed discussion (e.g., Deschênes

and Greenstone, 2007).

In order to identify the interaction effect between temperatures and CHCs, we require the

additional assumption that the two treatments are independent of one-another, conditional

on our control regime. Because we are relying on random weather shocks within a county-

month, there is little plausible reason to be concerned that temperature variation is related

to the establishment or presence of CHCs. Nevertheless, we show that estimates of both γ

and π are stable across versions of Equation (2) in which both treatments are included and

each is included separately.14

3.2.2 Interaction Model

Summary statistics in Table 1 reveal baseline differences across CHC and non-CHC counties.

In particular, CHC counties had higher average mortality rates in the pre-CHC period (1959-

1964) and were slightly warmer on average. These cross-sectional differences across counties

in average mortality rates and climate conditions are accounted for through county fixed

effects. While these controls are sufficient to separately estimate the effects of either CHC

access or temperature on mortality, causally identifying the interaction requires additional

controls. Conceptually, our empirical approach is to estimate a DiD design for the effect

of CHC access on the temperature-mortality relationship. It is likely that there are cross-

sectional differences in the temperature-mortality relationship that county fixed effects would

not account for (e.g., suppose the heat-mortality relationship is weaker in hot regions). Our

preferred specification for the interaction model explicitly absorbs cross-sectional differences

in the temperature-mortality relationship between CHC and non-CHC counties by allowing

baseline temperature effects to differ between these two groups. In this way we ensure our

estimates are identified from the change in the temperature-mortality relationship before

and after CHC establishment, rather than cross-sectional differences. Practically speaking

we are estimating a triple-differences specification, described below in Equation (3).

AMRcym = φ(CHCt≥0
cy × g(Tempcym)) + γCHCt≥0

cy + πg(Tempcym) (3)

+ θ(g(Tempcym) × Treatedc) + g(Tempcym) × δy

+ βXcym + δsy + δcm + δuy + δym + εcym

The coefficient of interest in Equation (3) is φ. We allow for fixed differences in the

14Additionally, we test more directly for independence among the two treatments by regressing each
treatment on the other and find no significant relationships. These results are presented in Table A1.
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temperature-mortality relationship between CHC and non-CHC counties through the in-

clusion of g(Tempcym) × Treatedc, where Treatedc is an indicator for whether a CHC was

ever established in the county over the 1965-1974 period. In an alternative specification,

we control for fixed differences across all counties in the temperature-mortality relationship

(analogous to county fixed effects in a standard DiD) by including county-specific temper-

ature effects: g(Tempcym) × δc. These estimates are presented along with our main results,

however because this specification adds over 3,000 additional parameters for each tempera-

ture variable, we opt for the more parsimonious model as our preferred specification.

Furthermore, just as time fixed effects in a standard DiD specification absorb differences

in mortality over time that are common across counties, our interaction model should also

account for differences in the temperature-mortality relationship over time. To this end,

year-specific temperature effects are included: g(Tempcym) × δy.

Because the roll-out of CHCs occurred during a period of increasing AC penetration rates,

it is potentially important to allow for differential effects of temperature across AC pene-

tration rates. Specifically, our estimates could be biased if the expansion of AC technology

is correlated with the timing of CHC establishment (though we have little reason to expect

this). To address this possibility, we also estimate a specification that includes the interaction

between temperature and the state-year AC penetration rate: g(Tempcym) × ACsy.

With these controls included, φ in Equation (3) identifies the change in the temperature-

mortality relationship from before to after CHC establishment, relative to the change in

the temperature-mortality relationship in counties where CHCs were established in different

years or not at all. The identifying assumption is similar to that of a standard DiD approach:

in the absence of treatment, trends in the temperature-mortality relationship would have

been similar in counties where CHCs were established in different years or not at all. While

this assumption is fundamentally un-testable, indirect tests support its plausibility. Most

importantly, an event-study version of Equation (3) is estimated to test for differential trends

in the temperature-mortality relationship prior to CHC establishment. We provide estimates

of a binned event study (to maximize the power of the estimates), as well as a full year-by-

year event-study.

Further note that the model described in Equation (3), g(Tempcym) is a function of mean

daily temperatures. Just as in the replication model, our preferred specifications rely upon

either a set of temperature bins or a third-order polynomial in temperature. See the appendix

for a generalized empirical model that allows for J event-study indicators measuring CHC

access and G temperature variables.
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4 Results

4.1 Replication Model

The results of the most basic replication models are presented in Table 2. The outcome

is the age-adjusted mortality rate (AMR) per 100,000 population, and all models include

the set of fixed effects and controls described in Equation (2). The models vary in whether

and how the effects of each treatment (CHCs and temperature) are incorporated. Column 1

starts with a simple model for the effect of CHC access on mortality with a single indicator

for the presence of an established CHC in a county (CHCt≥0), excluding all temperature

variables. The coefficient estimate indicates that CHC establishment led to approximately

1.14 fewer monthly deaths per 100,000 population. Relative to the pre-CHC mean AMR of

81.7 reported in Table 1, this represents a 1.4% decrease in the mortality rate.

Column 2 presents estimates from a simple model for the effects of temperature on

mortality, excluding any measures of CHC access. The coefficient estimates indicate that

both cold and hot temperatures led to substantial increases in mortality during our sample

period. The coefficient on Temp<40 (Temp>80) implies that one additional day under 40◦F

(over 80◦F) increases the monthly AMR by 0.116 (0.182), relative to a day in the 40-80◦F

range. Importantly for the estimation of interaction effects that follow, the statistical power

is extremely high for all estimates in Columns 1 and 2: the t-statistics for the coefficients

on CHCt≥0, Temp<40, and Temp>80 equal 3.6, 7.1 and 9.7, respectively (all are significant at

the 0.1% level).15

Columns 1 and 2 demonstrate successful replications of Bailey and Goodman-Bacon

(2015) and studies on the effects of temperature on mortality (e.g., Deschênes and Green-

stone, 2011; Barreca et al., 2016) using a common econometric framework. Column 3 includes

both treatment variables in a single model. When the CHC and temperature variables are

simultaneously included in the model, the coefficient estimates for each treatment remain

virtually unchanged. This reinforces the notion that the variation used to identify the effects

of these two treatments with respect to mortality are independent and thus identification of

interaction effects between the treatments is unlikely to be confounded by some unaddressed

interdependence.

The estimates in Columns 4 and 5 use models in which the single CHC indicator is

replaced by four indicators for time relative to CHC establishment (i.e., a binned event-study

15The extreme temperature bins (Temp<40
cym and Temp>80

cym) were chosen primarily to maximize the power
of the estimates since high statistical power is necessary to identify interaction effects in the models that
follow. While more extreme temperatures such as temperatures >90◦F lead to greater damages, these are
rare events and the estimates have large standard errors in the binned specifications.
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specification). Time relative to treatment is measured in 5-year bins, and the year prior to

CHC establishment (t = −1) is the omitted category and so all dynamic effects are measured

relative to that year, following Bailey and Goodman-Bacon (2015). The coefficient on the

pre-treatment CHC indicator (CHCt≤−2) is not statistically different from zero, indicating

no evidence of differential trends in mortality prior to CHC establishment. The coefficient

estimates on the three post-treatment CHC indicators are all negative, all highly significant,

and increasing with time since CHC establishment. The results in Column 5 (which includes

temperature variables) also closely mirror the results of Bailey and Goodman-Bacon (2015):

our coefficient estimates on the CHC0≤t≤4, CHC5≤t≤9, CHCt≥10 bins are -0.82, -1.51, and

-1.63, respectively, whereas the coefficient estimates from the equivalent model in Bailey and

Goodman-Bacon (2015) are -0.84, -1.58, and -1.46, respectively.16 Our estimates for the

effects of temperature are not directly comparable to those of Barreca et al. (2016) or similar

papers because of differences in outcome measures, sample periods, and model specifications,

but the estimates are of qualitatively similar character and magnitude.17

Results from more flexible replication models are presented in Figure 2. Panel A reports

single-year event study estimates for the effect of CHC access on mortality. These estimates

provide more detail on the dynamics of the treatment effects. The estimates again indicate

little evidence of differential pre-treatment trends in mortality prior to CHC establishment,

and a negative (i.e., ameliorative) treatment effect that emerges post-treatment and grows

over time. A similar single-year event-study will be estimated in the next section for the

effects of CHCs on the temperature-mortality relationship.

Panels B and C report flexible estimates of the effects of temperature on mortality. For

Panels B and C, we have limited the sample to the 114 counties that establish a CHC and

the years prior to CHC establishment (1959-1964). These estimates can thus serve a valid

baseline against which we can compare the interaction effects in the following section. Panel

B reports coefficient estimates from a model with five 10◦F temperature bins (60-70◦F is

omitted). This yields the familiar U-shaped relationship between temperature and mortality

that has been well documented in the prior literature. Panel C reports estimates from a

specification that models temperature as a third-order polynomial. This specification again

yields the familiar U-shaped relationship with estimates of similar magnitude.

16Because the Bailey and Goodman-Bacon (2015) model is estimated at the annual level, the coefficients
from their paper were divided by 12 to scale the coefficients down to the monthly level.

17The differences between our analyses and those of Barreca et al. (2016) include the following. Our sample
is 1959-1988 while the most-comparable Barreca et al. (2016) sample is 1960-2004. We use only <40◦F and
>80◦F, whereas Barreca et al. (2016) use all 10◦F bins between <10◦F and >90◦F. Finally, our outcome
is the age-adjusted mortality rate in levels (at the county level), whereas Barreca et al. (2016) use the log
crude mortality rate (at the state level).
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4.2 Interaction Model

Panel A of Table 3 presents estimates of the interaction models in which temperature is

modelled using two bins (Temp<40 and Temp>80), and CHC access is modelled using a single

post-treatment dummy. Column 1 is the baseline specification described in Equation (3),

and Columns 2-5 represent a variety of alternative specifications. Column 2 tests whether the

estimates are sensitive to allowing the effects of temperature to vary across AC penetration

rates. Column 3 replaces the g(Temp) × Treatedc controls with the more general county-

specific temperature effects (g(Temp)×δc); these represent over 3,000 additional parameters

for each temperature variable, absorbing arbitrary fixed differences across all counties in the

temperature-mortality relationship. Column 4 replaces the year-specific temperature effects

(g(Temp) × δy) with state-year temperature effects (g(Temp) × δsy). This specification con-

trols for anything changing differentially at the state level that could affect the temperature

mortality relationship, including state-level health policy or factors correlated with state

climate such as AC penetration. Finally, Column 5 includes a set of county-by-year fixed

effects, which non-parametrically control for any county-level factors that vary at the annual

(but not sub-annual) level.

The coefficient on the CHCt≥0 × Temp<40 interaction represents the change in the effect

of cold temperatures on mortality that can be attributed to CHC access. In most specifica-

tions, we find no evidence that CHC access has a significant impact on the cold-mortality

relationship. One exception is in Column 5, in which the coefficient of interest is negative

and significant at the 5% level. The negative sign implies that CHC access did successfully

mitigate the cold-mortality relationship, but this evidence is weak given the inconsistency

across the various specifications.

For hot temperatures, the coefficient estimate on CHCt≥0 × Temp>80 in Column 1 (the

main specification) yields a negative and statistically significant interaction term. The coeffi-

cient estimate changes little when AC interactions are included in Column 2. The magnitude

of the estimate is also stable across Columns 3 and 4, though the standard errors increase

substantially in these specifications due to the large number of additional parameters that

need to be estimated (nevertheless, the estimates remain significant at the 10% and 5%

levels, respectively). In Column 5, the estimate is slightly smaller in magnitude, though

still significant at the 5% level. These estimates imply that CHC access successfully miti-

gated the heat-mortality relationship, and the consistency across these various specifications

strengthens that conclusion.

The magnitude of the coefficient estimate on CHCt≥0 × Temp>80 in our preferred speci-

fication (Column 1) implies that CHC access reduced the effect of an additional day above

80◦F on mortality by 0.048 deaths per 100,000 population (relative to a 40-80◦F day). In
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relative terms, the estimate implies that CHC access mitigated the harmful effect of heat

on mortality by 14.2%, relative to the heat-mortality relationship in CHC counties in the

pre-CHC period.18

As an alternative way to interpret our estimates, we ask how much of the overall decline

in mortality attributable to CHC access comes from heat-related deaths? To answer this, we

multiply our preferred interaction estimate (-0.048) by the average number of hot days per

month (1.72). This product is the average number of heat-related deaths averted by CHC

access per month, per 100,000 population. We then divide by the overall effect of CHCs from

Column 1 of Table 2 (-1.136), implying that approximately 7.3% of deaths averted by access

to CHCs were heat-related. Because CHCs were not targeted toward preventing heat-related

mortality, it is not surprising that only a small portion of the deaths they prevented were

heat-related.

In Panel B of Table 3, we present estimates from a specification that allows for dy-

namic CHC treatment effects in a binned event-study framework. For both cold and hot

temperatures, the first coefficient estimates (CHCt≤−2 ×Temp<40 and CHCt≤−2 ×Temp≥80)

measure the “effect” of CHC access on the cold- and heat-mortality relationships in all peri-

ods more than one year before CHC establishment, relative to one year prior. Reassuringly,

the estimates are small in magnitude and statistically insignificant for both cold and hot tem-

peratures. The estimates for the three post-treatment interactions with <40◦F days yield

no statistically significant evidence of an effect of CHCs on the cold-mortality relationship

in any specification. The estimates for the post-treatment interactions with >80◦F days

are negative (across specifications), generally increase slightly in magnitude with years since

establishment, and are statistically significant in the less demanding specifications (Columns

1, 2, and 5).

The binned event-study approach groups together years relative to CHC establishment to

maximize the power of the dynamic estimates. We also present estimates of a full, year-by-

year event study in Figure 3. These estimates are consistent with our other results. For cold

temperatures, we again find evidence of neither differential pre-treatment trends in the cold-

mortality relationship nor of a post-treatment effect of CHC establishment. Indeed, none of

the 24 coefficient estimates are statistically different from zero. For hot temperatures, we

also find no evidence of differential pre-treatment trends in the heat-mortality relationship:

none of the eight pre-treatment coefficients are statistically different from zero. The effect

of CHCs on the heat-mortality relationship emerges shortly after CHC establishment: the

18To calculate the temperature-mortality relationship in CHC counties for the pre-CHC period, we limit
the sample to only CHC counties in 1959-1964, and estimate the a model equivalent to the one presented in
Column 2 of Table 2. The coefficient on Temp>80 equals 0.339 (s.e.=0.070), and the coefficient on Temp<40

equals 0.241 (s.e.=0.081).
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first statistically significant decline in the heat-mortally relationship comes in the third year

after establishment (t = 2). In total, all 16 of the post-treatment estimates are negative and

11 are statistically significant at the 5% level.

By modeling temperature using only two variables, the estimates in Table 3 provide a

relatively straightforward interpretation. In Figure 4, we model temperature more flexibly

to provide additional insight. Panel A uses five 10◦F bins and Panel B uses a third-order

polynomial. Each panel displays the interaction effects of temperature with a post-CHC

dummy. Both specifications reinforce the findings from Table 3. The estimate from the five-

bin model (Panel A) implies that CHC access mitigated the effect of an >80◦F day by 13.6%

(relative to a 60-70◦F day).19 The polynomial specification (Panel B) is useful as it allows

us to analyze the effects of CHC access on the temperature-mortality relationship across

the entire temperature distribution rather than relying on specific cut points at 40◦F and

80◦F. In the polynomial specification, the mitigating effects grow larger in absolute terms

at the high end of the distribution, but they are fairly constant (even decreasing) in relative

terms. Specifically, the polynomial specification implies that the effect of days with mean

temperatures of 80◦F and 85◦F (relative to a 65◦F day) were mitigated by 16% and 13%,

respectively.20

4.3 Additional Results and Robustness Checks

We present the estimates of a series of robustness checks and additional results in Tables A3

to A5. Details of these exercises are provided in Appendix Section A.3. To summarize:

we only find evidence that CHCs mitigated the heat-mortality relationship for individuals

aged 50 and older; results are robust to reliance on a series of more narrow, matched control

groups; and neither lagged nor harvesting effects of temperature on mortality appear to be

driving our estimates.

19This is relative to the baseline effects of temperature in CHC counties in the pre-CHC period, estimated
using a comparable five-bin model (estimates from which are displayed in Panel B of Figure 2). The coefficient
on the interaction is -0.0517 and the coefficient on the baseline effect is 0.380, thus the implied mitigation is
-0.0517/0.380 = -0.136. The coefficient estimates for the five-bin model are presented in Table A2.

20This is relative to the baseline effects of temperature in CHC counties in the pre-CHC period at the
same temperatures, estimated using a comparable polynomial model (estimates from which are displayed in
Panel C of Figure 2). The interaction effects at 80◦F and 85◦F are estimated to be -0.028 and -0.044. The
baseline effects of temperature on mortality at 80◦F and 85◦F are estimated to be 0.175 and 0.338. The
percent mitigation is the interaction effect divided by the baseline.
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5 Understanding Mechanisms

At this point, we have provided estimates of ∂2M
∂W∂P

(referring to Equation (1)) for both

hot and cold temperature shocks. The evidence supports the conclusion that primary care

(measured as access to CHCs) mitigates the heat-mortality relationship, but the evidence

does not support strong mitigating effects for the cold-mortality relationship. Why is this the

case? Answering this question requires understanding the different mechanisms underlying

the mortality effects of heat versus cold, and how those differences interact with the type of

care that we study.

5.1 Differences in the Effects of Heat and Cold

What are the different mechanisms underlying mortality triggered by heat versus cold? For

heat, it is often posited that the body’s thermoregulatory response imposes additional stress

on the cardiovascular and cerebrovascular systems (Basu and Samet, 2002); in a multi-

country epidemiological study, Gasparrini et al. (2015) state, “in the case of the association

of heat with cardiovascular mortality... acute events seem to be triggered when the body

exceeds its thermoregulatory threshold”. For cold, there is evidence that suggests cold

exposure can trigger physiological responses such as thrombosis (i.e., blood clotting), which

can then lead to acute cardiovascular and cerebrovascular events (Keatinge et al., 1984).

Cold weather can also induce mortality through cross-infection from indoor crowding, the

adverse effects of cold exposure on the immune system, and increased survival of bacteria

and viruses during cold temperatures (Eurowinter Group, 1997; Gasparrini et al., 2015).

We can see these distinctions to some extent in our own data. In Panel A of Table 4,

we provide estimates of the effects of both cold and hot temperatures on mortality by six

cause of death categories that are measured consistently over our sample period. Cardiovas-

cular and cerebrovascular deaths account for approximately 50% of cold-related mortality

and 71% of heat-related mortality.21 Because Bailey and Goodman-Bacon (2015) find that

CHCs reduced mortality primarily among these causes of death, this begins to uncover why

CHCs had larger mitigating impacts for heat versus cold: heat-related mortality is more

concentrated in the causes of deaths that were prevented by access to CHCs.

In Panel B of Table 4, we present estimates of the interaction model by cause of death.

While power is limited, these estimates reveal at least one important finding: the <40◦F

interaction is negative and statistically significant for respiratory disease. This suggests that

21We calculate these percentages by summing the coefficients on Cardiovascular and Cerebrovascular
mortality, and dividing by the coefficient on All-Cause mortality (e.g., for cold-related mortality: (0.0905 +
0.0311)/0.242).
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important heterogeneity was hidden in our analysis of all-cause mortality, and that CHCs

were indeed effective at preventing certain types of cold-related mortality.

This analysis by cause of death is useful, but limited, notably in that we can only construct

consistent disease categories for very broad groups over our sample period. Furthermore,

cause of death is an incomplete measure of the conditions that lead to mortality. It is

possible, for example, that two deaths with the same ultimate cause of death were triggered

by very different initial conditions. As an alternative method for differentiating between the

mortality effects of heat and cold, we examine the daily dynamics of each relationship. This

is possible because data on the exact date of death are available for most years in our sample.

To analyze the dynamic effects of temperature, we utilize daily data on weather and

mortality (date of death was recorded for 1962-1966 and 1972-1988) in combination with a

daily-level distributed lag model that is otherwise similar to Equation (2).22 The results of

this analysis are presented in Figure 5 for both cold days (Panel A) and hot days (Panel B).

Each plot displays the daily effects (i.e., coefficient estimates) and the dynamic cumulative

effects (i.e., sums of coefficient estimates). For a temperature shock on day 0, the daily

effects represent the change in mortality t days later, and the cumulative effects represent

the total change in mortality from day 0 through day t. It is immediately clear that the

dynamics are very different between the effects of heat versus cold. For a >80◦F day, almost

the entire increase in mortality comes on the day of the shock and the day after. For a <40◦F

day, there is a decrease in mortality on the day of the shock, and increases in mortality 2-

20 days later. As an example, take note of the cumulative effect two days after the shock

(t = 2): the cumulative effect peaks at this point for heat, whereas the cumulative effect is

not statistically different from zero for cold.

The main takeaway is that the effects of heat tend to be immediate whereas the effects

of cold tend to be delayed.23 These different dynamics imply there are different pathways

underlying the relationships between heat versus cold, and thus we should not necessarily

expect that one type of health care should mitigate these relationships equally. Furthermore,

these dynamics have implications for the potential mitigating effects of different types of care.

To consider this, let us again refer back to Equation (1) and the distinction between acute

treatment (T ) and preventative care (P ). Note that acute treatment can only be effective if

22The model we estimate is specified as follow:

MRct =

30∑
h=0

πt−hg(Tempc,t−h) + βXcym + δsy + δcm + δuy + δym + δday−of−week + δday−of−year + εcym

23This finding is consistent with prior work utilizing daily data on mortality (Anderson and Bell, 2009;
Deschênes and Moretti, 2009; Gasparrini et al., 2015) and emergency department visits (White, 2017).
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there is time to seek treatment between the onset of an illness episode and mortality. The

immediate effects of heat on mortality suggest there is less time to seek treatment for heat-

induced illness episodes, and thus increasing access to acute treatment may not be as effective

as preventative care at mitigating heat-related deaths. On the other hand, the delayed

impacts of cold suggest that access to treatment may be relatively more important. We

explore this further in the following section, in which we present results from a supplementary

analysis that has the goal of estimating the mitigating effect of acute treatment: ∂2M
∂W∂T

.

5.2 The Effects of Increasing Access to Acute Treatment: South-

ern Hospital Desegregation

In this section, we provide a supplementary analysis in which we utilize the desegregation of

Southern hospitals to test how access to acute treatment (specifically hospital care) mitigates

the temperature-mortality relationship. We chose to focus on hospital desegregation for a

number of reasons: (1) hospital desegregation represented a massive change in access to

acute treatment for a well-defined group, (2) desegregation occurred during the same 30-

year sample period as our CHC analysis and thus the setting and data are similar, and (3)

we can build directly on prior work – Almond et al. (2006) – that studied the direct mortality

effects of hospital desegregation.

While additional information on Southern hospital desegregation can be found in Al-

mond et al. (2006), we briefly summarize several points regarding desegregation that are key

to understanding our analysis. Hospital segregation in the US entailed a separate hospital

building, wing, or floor for non-white patients. These “negro wards” were typically small

and offered sub-standard care; they were often over-crowded and potential patients would be

turned away if the ward was at capacity. Hospital segregation persisted in the Southern US

largely unchecked for many years after the 1954 Brown vs. Board of Education decision that

resulted in the desegregation of public schools. Most Southern hospitals were ultimately de-

segregated following the 1966 implementation of Medicare, which barred segregated hospitals

from receiving reimbursement through the program.

Desegregation would have had the largest mortality impacts on potentially fatal illnesses

for which effective in-hospital treatments were available. Almond et al. (2006) tailor their

analysis to a specific population that was especially likely to benefit: post-neonatal infants

(1-12 months old). Many post-neonatal deaths in this period were due to the contraction

of infectious diseases leading to pneumonia and gastroenteritis, and deaths due to these

conditions could be avoided with timely medical treatment. Another advantage of focusing

on post-neonatal infants (rather than older children or adults) is that they would not have
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been directly impacted by other policy changes at the time such as the implementation of

Medicare or the desegregation of public schools.24 In our analysis, we follow Almond et al.

(2006) and focus only on post-neonatal infants. Desegregation could have influenced the

temperature-mortality relationship if the types of deaths triggered by temperature exposure

(1) overlap with deaths that could have been prevented by desegregation and (2) exhibit

a sufficient delay between exposure and death such that successful treatments could be

implemented.

In estimating the effects of desegregation, Almond et al. (2006) employ two strategies.

The first strategy simply compares post-neonatal mortality among non-whites and whites in

Southern states, before and after desegregation occurred in 1966. The second strategy is a

more rigorous approach that utilizes the actual year of desegregation by hospital, but confines

the analysis to Mississippi where the necessary data is available. Our analysis builds off of the

first strategy because we need to simultaneously estimate the effects of temperature, which

requires sufficient variation in weather in each period of study. Given that Almond et al.

(2006) find very similar results with their two strategies, we are confident that our approach

primarily captures the causal effects of desegregation. That being said, we acknowledge that

our estimates may capture other factors that contributed to the reduction in the racial gap

in post-neonatal mortality in Southern states in the 1960s to 1970s. As such, our estimates

should be considered an upper bound, and we proceed with this caveat in mind.

The structure of our analysis of desegregation closely mirrors our analysis of CHCs.

Specifically, we first estimate the effects of temperature and desegregation on post-neonatal

mortality in separate replication models and then build models to estimate the interaction.

The empirical specifications are very similar to Equations (2) and (3), and are described in

Appendix B.

The results for both the replication and interaction models are presented in Figure 6.

In all panels, the outcome is the post-neonatal mortality rate (PNMR) per 100,000 births.

Panels A, B, and C represent the replication estimates (mirroring Figure 2), and Panels D and

E represent the interaction estimates (mirroring Figure 4). Panel A demonstrates a successful

replication of Almond et al. (2006): hospital desegregation led to a massive decline in post-

neonatal mortality among non-whites compared to whites. The corresponding difference-in-

differences estimate is a decrease in the PNMR of 71.77, representing an approximate 44%

decline relative to the pre-desegregation mean non-white PNMR of 163.9. Panels B and C

represent the effects of temperature on the non-white PNMR in the pre-desegregation period,

using temperature bins (Panel B) and a polynomial specification (Panel C). Both panels

24As noted by Almond et al. (2006), Medicaid didn’t become available in many Southern states until years
after 1966. In Mississippi, for instance, Medicaid was not available until 1970 (Almond et al., 2006).
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indicate that cold temperatures led to large increases in the PNMR. This is consistent with

the fact that most deaths in this population were due to causes linked to infectious disease.

Panels D and E represent estimates of the interaction between hospital desegregation

and temperature. Both panels indicate that hospital desegregation was highly effective at

mitigating the relationship between cold and post-neonatal mortality. The magnitude of the

mitigating effects is large, though consistent with the large overall effects of desegregation.

The implied mitigation from the polynomial specification is 83% at 35◦F, and the binned

specification implies complete mitigation of the effects of days <50◦F.

The analysis of desegregation provides an estimate of the mitigating effects of acute

care ( ∂2M
∂W∂T

), whereas the CHC analysis provides an estimate of the mitigating effects of

primary care ( ∂2M
∂W∂P

). Comparing these two analyses implies that acute care is relatively

more important for cold-related illness and that primary care is relatively more important

for heat-related illness. We emphasize, however, that these estimates were derived from two

health care experiments that took place in very different contexts, and thus we view any

conclusions resulting from this comparison as only suggestive in nature.

6 Conclusion

The goal of this paper is to understand how access to health care can mitigate the health

impacts of exposure to extreme temperatures. Utilizing quasi-experimental variation in

access to care through the roll-out of the Community Health Center (CHC) program, our

main finding is that the establishment of a CHC in a county mitigated the relationship

between heat and all-cause mortality by approximately 14%. We find little evidence that

CHC access mitigated the effects of cold on all-cause mortality.

We note that health care is not one-dimensional. In particular, we make a distinction be-

tween preventative (or primary) care and acute treatment. CHCs only provided preventative

care, and thus our main analysis is only relevant to the provision of preventative care. This

is an important consideration because different types of care may be more relevant to certain

environmental shocks. Our main analysis demonstrates that preventative care is effective

at reducing heat-induced mortality, and a supplementary analysis – leveraging variation in

access to acute treatment arising from hospital desegregation in the American South – shows

that acute treatment is effective at reducing cold-induced mortality.

This paper uses a causal framework to demonstrate that improved access to health care

(defined generally) can indeed mitigate the effects of exposure to adverse environmental

conditions. The results also suggest that the mode of care (i.e., primary or acute care) is

important. To be effective, the specific dimension of health care for which access is improved
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must address the types of ailments triggered by the environmental shock of interest. This

insight is crucial when considering both current inequities in environmental health damages

and climate change adaptation, as it suggests that expanding health care access will be an

effective approach to reducing the harmful effects of adverse environmental conditions only

insofar as the mode of health care can be reasonably well-targeted. In the context of climate

change, the ameliorative effect of primary care on the heat-mortality relationship suggests

that expanding access to primary care may be an effective approach to mitigating the health

damages of a warmer climate.

Finally, access to health care varies dramatically both within and between countries.

Given this reality, our results provide a clear, causal pathway through which heterogeneity

in environmental damages can be partially explained. Thus, even as our findings demon-

strate how improvements in access to care can reduce the harm from specific environmental

exposures, they underscore how existing differences in access to specific domains of care

are likely contributing to widespread inequality in the incidence of environmental health

damages.
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Figure 1: Trends in ∂Mortality
∂Temperature

, Gov’t Health Spending, and CHC Access
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Notes: For Panel A, coefficient estimates for the effects of temperature and mortality are from models
described in Section 3.2.1 with five temperature bins and the sample limited to a 7 year period centered
around the year in question. For example, the sample for the point labeled “1962” is 1959-1965. All of the
estimates are significant at the 5% level; interpretation of the magnitudes of similar estimates is given in
Section 4.1. For Panel B, data on government health expenditures are from the National Health Expenditure
Accounts, and include government spending on health insurance for the Department of Defense and the
Department of Veterans Affairs, Medicaid, Medicare, government public health expenditures (including the
Community Health Center program), government health investments, and other programs. The CHC roll-
out variable measures the share of the US population with a CHC in their county (using the fixed 1960
population); the focus is on the first wave of CHC establishments during in 1965-1974 as described in
Section 2.2.
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Figure 2: Replication Models – Flexible Specifications
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Notes: Panel A represents the effects of access to Community Health Centers (CHCs) on the age-adjusted mortality rate per 100,000 population
(AMR); in this plot, period t = 0 represents the year in which a CHC was established in a given county. A balanced panel of counties identify all
event study coefficients between t-6 and t+14 (i.e., the same number of counties identify these coefficients). Panels B and C represent the effects of
temperature on the AMR using a sample limited to counties in which CHCs were established and years prior to CHC establishment (1959-1965); these
estimates are intended to serve as a reference point for the interaction estimates presented in Table 3 and Figure 4. In Panel B, variables measuring
the number of days in each of five 10◦F temperature bins are included (60-70◦F days are excluded as the reference group). Panel C allows for
analysis across the entire temperature distribution in a parsimonious manner following (Carleton et al., 2018). These regressions include a third-order
polynomial in daily mean temperature, where each polynomial term is constructed at the daily level and then summed over months. Each point on
the plot represents a test of the hypothesis that the effect of a single day at the given temperature is equal to the effect of a day with temperature
equal to 65◦F (i.e., the interpretation is analogous to the interpretation of the coefficients plotted in Panel B). Bars and dashed lines represent 95%
confidence intervals.
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Figure 3: Event Study for the Effects of CHC Access on ∂Mortality
∂Temp
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Notes: All estimates in both panels are derived from a single regression with the age-adjusted mortality rate
per 100,000 population (AMR) as the outcome variable. Period t = 0 represents the first year in which a
Community Health Center (CHC) was established in a given county. A balanced panel of counties identify all
event study coefficients between t-6 and t+14 (i.e., the same number of counties identify these coefficients).
Bars represent 95% confidence intervals.
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Figure 4: Interaction Model – Flexible Nonlinear Specifications
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Notes: These estimates represent the effect of Community Health Center (CHC) access on the temperature-
mortality relationship (i.e., the estimates of the interaction are plotted). Mortality is measured using the
age-adjusted mortality rate per 100,000 population (AMR). Instead of parameterizing temperature using
two bins as in Table 3, these plots represent estimates with five temperature bins (Panel A) and a third-
order polynomial in temperature (Panel B). In Panel A, each point represents a test of whether CHC access
changes the impact of a day with a mean temperature in the given range relative to a day between 60-70◦F.
In Panel B, each point represents a test of whether CHC access changes the impact of a day with the exact
given mean temperature relative to a day with a mean temperature equal to 65◦F. The controls included
in these specifications are equivalent to those presented in Column 1 of Table 3. Bars and dashed lines
represent 95% confidence intervals.
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Figure 5: Daily Dynamic Effects of Temperature
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Notes: Estimates derived from a distributed lag model as described in Section 5.1. The model estimated at
the daily level with 30 lags in each temperature variable, and the outcome is the mortality rate per 100,000
population. The coefficient estimates (labeled “daily effects”) represent the change in mortality on a given
day due to a temperature shock t days prior, and are estimated directly as the coefficients on the lag terms.
The “cumulative effects” represent the sum of all coefficients up to and including t, and thus represent the
total change in mortality between day 0 and day t. All values in both panels are estimated based on a single
regression. Bars on the cumulative estimates represent 95% confidence intervals.
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Figure 6: Desegregation Analysis
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Notes: These plots represent the analysis of Southern hospital desegregation. The outcome in all panels is the post-neonatal mortality rate (PNMR)
per 100,000 live births. Panels A-C represent the direct effects of both desegregation and temperature on the PNMR, and mirror Figure 2 from the
CHC analysis. Panels D-E represent the interaction between desegregation and temperature, and mirror Figure 4 from the CHC analysis. Bars and
dashed lines represent 95% confidence intervals, and standard errors are two-way clustered at the state and year-by-month levels.
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Table 1: Summary Statistics

All Counties CHC Counties Non-CHC Counties
All Years Pre-CHC Years Pre-CHC Years
1959-1988 1959-1964 1959-1964

Mean S.D. Mean S.D. Mean S.D.

AMR 68.3 (16.46) 81.7 (11.17) 76.75 (17.53)
Infant MR 146.9 (146.8) 212.5 (61.42) 210.21 (177.74)
AMR Age 1-14 14.93 (12.97) 21.51 (6.28) 5.13 (7.56)
AMR Age 15-49 18.34 (11.17) 20.58 (5.52) 19.41 (12.7)
AMR Age 50+ 237.3 (56.4) 282.03 (40.68) 264.02 (64.27)
AMR Heart Dis. 26.31 (9.01) 33.41 (6.39) 31.44 (10.42)
AMR Cerebro. Dis. 7.38 (4.49) 9.83 (2.63) 10.05 (5.63)
AMR Cancer 12.89 (4.75) 13.34 (2.29) 11.82 (5.5)
AMR Resp. Dis. 3.34 (2.83) 3.57 (1.83) 2.98 (3.31)
AMR Diabetes 1.27 (1.52) 1.5 (0.81) 1.37 (1.88)
AMR Accidents 4.10 (3.93) 3.88 (1.53) 4.57 (4.53)

Temperature (◦F) 54.5 (17.28) 54.87 (16.88) 54.29 (17.69)
# Days <40◦F 7.08 (10.44) 6.73 (10.36) 7.45 (10.72)
# Days 40-50◦F 4.61 (5.74) 4.58 (5.82) 4.48 (5.60)
# Days 50-60◦F 5.26 (6.05) 5.61 (6.63) 4.88 (5.67)
# Days 60-70◦F 5.99 (6.7) 6.16 (6.92) 5.84 (6.5)
# Days 70-80◦F 5.72 (8.10) 5.65 (8.04) 6.06 (8.23)
# Days ≥ 80◦F 1.77 (5.31) 1.72 (5.25) 1.74 (5.18)
Precipitation (mm) 83.76 (56.15) 75.43 (53.54) 81.77 (54.53)

AC (1959-1964) 0.13 (0.07) 0.13 (0.07) 0.13 (0.07)
AC (1965-1988) 0.44 (0.28) 0.41 (0.26) 0.45 (0.28)

Counties 3,041 114 2,927
Notes: All summary statistics represent monthly averages for counties included in our analytic sample.
AMR represents the age-adjusted mortality rate per 100,000 population. AC is the air conditioning
penetration rate measured at the state level. Summary statistics are weighted by the county’s 1960
population.
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Table 2: Effects of CHC Access and Temperature on Mortality

(1) (2) (3) (4) (5)

CHCt≥0 -1.136 -1.146
(0.307) (0.307)

CHCt≤−2 -0.0976 -0.102
(0.168) (0.168)

CHC0≤t≤4 -0.836 -0.850
(0.157) (0.158)

CHC5≤t≤9 -1.554 -1.566
(0.271) (0.270)

CHCt≥10 -1.562 -1.578
(0.390) (0.390)

Temp<40 0.116 0.116 0.116
(0.0159) (0.0158) (0.0158)

Temp≥80 0.182 0.183 0.183
(0.0187) (0.0187) (0.0187)

N 1,094,760 1,094,760 1,094,760 1,094,760 1,094,760
Notes: Estimates from each column are from a separate regression. All use county-level,
age-adjusted mortality rate per 100,000 population (AMR) as the outcome variable. The co-
variates and fixed effects described in Equation (2) are included in all specifications. Standard
errors in parentheses are two-way clustered at the county and year-by-month levels.

36



Table 3: Effects of CHC Access on the Temperature-Mortality Relationship

(1) (2) (3) (4) (5)
Panel A: DD Estimates

CHCt≥0 × Temp<40 -0.00294 -0.00346 -0.00336 -0.00324 -0.0221
(0.0114) (0.0115) (0.0151) (0.0155) (0.0101)

CHCt≥0 × Temp≥80 -0.0484 -0.0518 -0.0499 -0.0603 -0.0314
(0.0201) (0.0197) (0.0273) (0.0288) (0.0131)

Panel B: Binned Event-Study Estimates

CHCt≤−2 × Temp<40 -0.00207 -0.00186 -0.00261 -0.0109 0.00400
(0.0179) (0.0179) (0.0245) (0.0213) (0.0184)

CHC0≤t≤4 × Temp<40 0.00452 0.00436 0.00350 -0.00949 -0.00627
(0.0157) (0.0158) (0.0215) (0.0193) (0.0175)

CHC5≤t≤9 × Temp<40 -0.00916 -0.00938 -0.0106 -0.0142 -0.0216
(0.0185) (0.0185) (0.0256) (0.0211) (0.0212)

CHCt≥10 × Temp<40 -0.0102 -0.0108 -0.0107 -0.0161 -0.0255
(0.0235) (0.0234) (0.0310) (0.0256) (0.0234)

CHCt≤−2 × Temp≥80 -0.0116 -0.00987 -0.00616 0.00812 -0.0438
(0.0234) (0.0233) (0.0450) (0.0339) (0.0267)

CHC0≤t≤4 × Temp≥80 -0.0506 -0.0514 -0.0471 -0.0321 -0.0586
(0.0231) (0.0231) (0.0370) (0.0291) (0.0260)

CHC5≤t≤9 × Temp≥80 -0.0627 -0.0633 -0.0531 -0.0627 -0.0662
(0.0220) (0.0218) (0.0339) (0.0354) (0.0244)

CHCt≥10 × Temp≥80 -0.0597 -0.0628 -0.0601 -0.0565 -0.0795
(0.0249) (0.0249) (0.0393) (0.0351) (0.0263)

N 1,094,760 1,094,760 1,094,760 1,094,760 1,094,760

Temp × Treated X X X X
Temp × δy X X X X
Temp × AC X
Temp × δc X
Temp × δsy X
δcy X

Notes: Each column in each panel reports coefficient estimates from a separate regression. All use county-
level, age-adjusted mortality rate per 100,000 population (AMR) as the outcome variable. The main effects for
temperature and CHC access are included in all specifications. The interacted temperature controls represent
controls for all temperature variables included in the model; for example, “Temp × Treated” include both
Temp<40×Treated and Temp>80×Treated. The specification in Column 5 includes county-by-year fixed effects
in place of all county-level annually-varying covariates, including the post-treatment indicator for presence of
a CHC. Standard errors in parentheses are two-way clustered at the county and year-by-month levels. For
reference, the baseline estimates for CHC counties in the pre-CHC period (1959-1964) for the effect of a <40◦F
and >80◦F day are 0.241 (s.e.=0.081) and 0.339 (s.e.=0.070), respectively.
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Table 4: Estimates by Cause of Death

Panel A: Effects of Temperature (CHC Counties, 1959-1964)
All-Cause Cardiovascular Cerebrovascular Cancer Respiratory Diabetes Accidents

Temp<40 0.242 0.0905 0.0311 0.0144 0.0415 0.00102 0.00367
(0.0805) (0.0360) (0.0142) (0.00986) (0.0198) (0.00503) (0.00900)

Temp≥80 0.339 0.169 0.0726 0.00151 0.0383 0.00551 0.0106
(0.0699) (0.0299) (0.0147) (0.0137) (0.0115) (0.00435) (0.00834)

N 8,208 8,208 8,208 8,208 8,208 8,208 8,208
Mean Dep. Var. 81.48 33.30 9.79 13.32 3.97 1.49 4.03

Panel B: Interaction Estimates
All-Cause Cardiovascular Cerebrovascular Cancer Respiratory Diabetes Accidents

CHCt≥0 × Temp<40 -0.00294 -0.00459 0.000325 0.00104 -0.00661 -0.000628 -0.00268
(0.0114) (0.00831) (0.00309) (0.00288) (0.00268) (0.000825) (0.00196)

CHCt≥0 × Temp≥80 -0.0484 -0.00967 -0.0101 -0.00384 -0.00911 -0.00279 -0.00608
(0.0201) (0.0134) (0.00520) (0.00561) (0.00432) (0.00146) (0.00369)

N 1,094,760 1,094,760 1,094,760 1,094,760 1,094,760 1,094,760 1,094,760
Notes: This table presents estimates by cause of death. For each column, the outcome is the number of deaths in the given disease category per 100,000 population.
All-cause mortality is displayed for reference in Column 1. Panel A displays the direct effects of temperature on mortality by cause of death; the sample is limited
to CHC counties in the pre-CHC period (1959-1964). Panel B displays the interaction effects, and the specification corresponds to Column 1 of Table 3. Standard
errors in parentheses are two-way clustered at the county and year-by-month levels.
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Table A1: Association between CHCs and Temperature Shocks

Temp>80 Temp<40 CHC CHC CHC

CHC 0.0192 0.0229
(0.0279) (0.0392)

Temp<40 0.0000466 0.0000328
(0.0000793) (0.0000978)

Temp>80 0.0000626 0.0000472
(0.0000897) (0.000114)

N 1,094,760 1,094,760 1,094,760 1,094,760 1,094,760
Notes: Column labels denote the outcome variable of each regression. “CHC” represents an indicator
for whether a CHC was in place in the given county and year. All models include county and
year-month fixed effects. Standard errors are clustered at the county level.
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Table A2: CHC Interaction Model – Five Temperature Bins

(1) (2)
Panel A: Simple DiD

CHCt≥0 × Temp<40 -0.0174 -0.0177
(0.0153) (0.0152)

CHCt≥0 × Temp≥80 -0.0517 -0.0536
(0.0224) (0.0221)

Panel B: Binned Event Study

CHCt≤−2 × Temp<40 0.00439 0.00493
(0.0338) (0.0338)

CHC0≤t≤4 × Temp<40 0.00375 0.00388
(0.0296) (0.0295)

CHC5≤t≤9 × Temp<40 -0.0132 -0.0131
(0.0343) (0.0341)

CHCt≥10 × Temp<40 -0.0281 -0.0281
(0.0396) (0.0394)

CHCt≤−2 × Temp≥80 0.00369 0.00443
(0.0306) (0.0309)

CHC0≤t≤4 × Temp≥80 -0.0383 -0.0389
(0.0271) (0.0272)

CHC5≤t≤9 × Temp≥80 -0.0478 -0.0487
(0.0299) (0.0299)

CHCt≥10 × Temp≥80 -0.0536 -0.0556
(0.0305) (0.0303)

N 1,094,760 1,094,760
40-50, 50-60, 70-80 Bins & Interactions X X
Temp × Treated X X
Temp × δy X X
Temp × AC X

Notes: In addition to the <40◦F and >80◦F temperature bins included in the main specifications,
temperature variables with counts of days with mean temperatures 40-50◦F, 50-60◦F, and 70-80◦F
are included as well. All relevant interactions are also included for each temperature bin (i.e., the
CHC interactions in all specifications and the additional interactions depending on the column).
The 60-70◦F range is the omitted group. Standard errors in parentheses are two-way clustered at
the county and year-by-month levels. Both columns use county-level, age-adjusted mortality rate
per 100,000 population (AMR) as the outcome variable.
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Table A3: Estimates by Age

Panel A: Baseline Effects of Temp.
Infant 1-14 15-49 50+

Temp<40 0.361 0.0178 0.0240 0.866
(0.362) (0.0142) (0.0177) (0.308)

Temp≥80 -0.303 -0.000271 0.0556 1.448
(0.401) (0.0241) (0.0341) (0.279)

N 7920 7920 8208 8208
Mean Dep. Var. 212.5 5.0 20.6 290.0

Panel B: Interaction Estimates
Infant 1-14 15-49 50+

CHCt≥0 × Temp<40 0.0798 0.000213 -0.000232 -0.0189
(0.0906) (0.00238) (0.00535) (0.0485)

CHCt≥0 × Temp≥80 -0.135 0.000731 -0.00309 -0.225
(0.123) (0.00557) (0.0116) (0.0840)

N 1072440 1072440 1094760 1094760
Notes: This table presents estimates by age. For each column, the outcome is the number
of deaths in the given age group per 100,000 population in that age group. Panel A
displays the direct effects of temperature on mortality by age; the sample is limited
to CHC counties in the pre-CHC period (1959-1964). Panel B displays the interaction
effects, and the specification corresponds to Column 1 of Table 3. Standard errors in
parentheses are two-way clustered at the county and year-by-month levels.
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Table A4: CHC Interaction Model – Trimmed Samples

(1) (2) (3) (4) (5) (6)
Panel A: Simple DiD

CHCt≥0 × Temp<40 -0.000620 0.0174 0.0220 -0.00315 -0.00372 -0.000765
(0.0135) (0.0167) (0.0247) (0.0116) (0.0115) (0.0124)

CHCt≥0 × Temp≥80 -0.0343 -0.0330 -0.0239 -0.0598 -0.0584 -0.0568
(0.0187) (0.0225) (0.0310) (0.0199) (0.0199) (0.0206)

Panel B: Binned Event Study

CHCt≤−2 × Temp<40 -0.0182 -0.0355 -0.0160 -0.000598 -0.00114 0.000762
(0.0295) (0.0185) (0.0265) (0.0203) (0.0204) (0.0220)

CHC0≤t≤4 × Temp<40 -0.00911 -0.0319 -0.0117 0.00471 0.00445 0.00917
(0.0242) (0.0171) (0.0329) (0.0178) (0.0179) (0.0189)

CHC5≤t≤9 × Temp<40 -0.0176 -0.00214 0.0226 -0.00735 -0.00834 -0.00408
(0.0294) (0.0204) (0.0332) (0.0208) (0.0209) (0.0232)

CHCt≥10 × Temp<40 -0.0233 -0.00752 0.0131 -0.00881 -0.0105 -0.00562
(0.0368) (0.0224) (0.0314) (0.0265) (0.0264) (0.0292)

CHCt≤−2 × Temp≥80 -0.0247 -0.0262 -0.0286 -0.0101 -0.0106 -0.0163
(0.0231) (0.0404) (0.0538) (0.0233) (0.0233) (0.0239)

CHC0≤t≤4 × Temp≥80 -0.0528 -0.0532 -0.0411 -0.0536 -0.0532 -0.0532
(0.0227) (0.0420) (0.0579) (0.0227) (0.0226) (0.0228)

CHC5≤t≤9 × Temp≥80 -0.0567 -0.0504 -0.0413 -0.0721 -0.0714 -0.0760
(0.0220) (0.0371) (0.0558) (0.0209) (0.0209) (0.0211)

CHCt≥10 × Temp≥80 -0.0566 -0.0599 -0.0589 -0.0741 -0.0728 -0.0777
(0.0248) (0.0367) (0.0580) (0.0249) (0.0249) (0.0253)

N 210,600 117,720 56,160 1,093,680 1,078,920 894,240
Standard P-Score X X X
Climate P-Score X X X
P-Score Range [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8]

Notes: This table replicates the findings from Column 1 of Table 3, with samples limited to counties within the given
propensity score range. Standard errors in parentheses are two-way clustered at the county and year-by-month levels.

43



Table A5: CHC Interaction Model – Including Lags in Temperature

(1) (2)
Panel A: Coef. Estimates

CHCt≥0 × Temp<40
t -0.0166 -0.0172

(0.0142) (0.0143)
CHCt≥0 × Temp<40

t−1 0.0175 0.0179
(0.0142) (0.0142)

CHCt≥0 × Temp≥80
t -0.0350 -0.0407

(0.0270) (0.0266)

CHCt≥0 × Temp≥80
t−1 -0.0199 -0.0158

(0.0265) (0.0265)

Panel B: Summed Estimates

CHCt≥0 × Temp<40
t + CHCt≥0 × Temp<40

t−1 0.0009 0.0008
(0.0126) (0.0128)

CHCt≥0 × Temp≥80
t + CHCt≥0 × Temp≥80

t−1 -0.0549 -0.0565
(0.0219) (0.0217)

N 1,091,719 1,091,719
Temp × Treated X X
Temp × δy X X
Temp × AC X

Notes: In this specification, a one-month lag in temperature is included for each temperature variable.
All relevant interactions are also included for each lagged bin (i.e., the CHC interactions in all
specifications and the additional interactions depending on the column). Panel A reports both
contemporaneous and lagged coefficients, and Panel B reports the sum of the two coefficient estimates
(i.e., the total two-month effect). Standard errors in parentheses are two-way clustered at the county
and year-by-month levels. The outcome is the age-adjusted mortality rate per 100,000 population
(AMR).
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Online Appendix

A CHC Analysis Details

A.1 Data Details

A.1.1 Community Health Centers and Covariates

Data on the timing and location of CHC establishments, as well as data on all covariates

used in Bailey and Goodman-Bacon (2015), were graciously shared by Martha Bailey and

Andrew Goodman-Bacon. These data were painstakingly collected through a variety of

archival sources including the National Archives Community Action Program, hand-entered

Public Health Service Reports, and other primary sources. For all CHCs established in

1965-1974, these data indicate the county in which services are provided, and the year in

which the county received its first CHC services grant (as opposed to planning grants). For

the purposes of this paper, it is only important that this data provide accurate information

on the year and location in which CHC services were first offered. CHC establishments

are coded as beginning in January of the relevant year. We refer readers to Bailey and

Goodman-Bacon (2015) for more detail on the data collection.

A.1.2 Mortality Rates

Mortality data are derived from the 1959-1988 National Vital Statistics System (NVSS)

mortality files maintained by the National Center for Health Statistics (NCHS). For years

through 1988, these files are publicly available with county identifiers. We use a crosswalk

between NCHS county codes and FIPS county codes to deal with changes in county coding

over time (ICPSR 36603). The NVSS files contain individual-level information on all deaths

in the US. Deaths are matched to weather and CHC data based on the year, month, and

county of occurrence.

The primary outcome of interest is the age-adjusted mortality rate per 100,000 popula-

tion. Annual county-level population data by 5-year age groups for the period 1969-2016 are

obtained from the Surveillance, Epidemiology, and End Results Program (SEER). Because

these data are only available for the period 1969 and beyond, we also use data from the U.S.

Census Bureau on county-level population in 1950 and 1960; population data are linearly

interpolated for the missing years between 1950 and 1969.

The main outcome of interest is the age-adjusted mortality rate (AMR). Age-adjusted

mortality rates hold fixed the age distribution of the population of a given county such

that changes in the AMR reflect changes in the risk of death rather than changes in the
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age structure. In particular, the AMR for county c at time t is calculated as a weighted

average of age-specific mortality rates (ASMR) for county c at time t and 5-year age group

a. ASMRcta = 100, 000 × Deathscta
Popcta

; AMRct =
∑18

a=1 sca × ASMRcta, where sca is the 1960

share of the population in 5-year age group a. Age-adjusting refers to holding the population

age share sca fixed.

A.1.3 Weather

The assignment of local weather conditions to population groups is central to our empirical

investigation. Our main data source on weather is derived from the PRISM Climate Group

(aggregated by Schlenker and Roberts, 2009). This contains daily data on temperature and

precipitation for points on a 2.5-by-2.5 mile grid for the U.S. over the period 1959-1988. We

aggregate the data to the county level by taking a weighted average of daily temperature and

precipitation for all grid points within a county, where the values from each grid point are

weighted by the inverse of the squared distance from the grid point to the county’s population

centroid. Our main temperature variable of interest is the daily mean temperature (the mean

of the minimum and maximum temperature). Daily mean temperatures are grouped into

10◦F-wide bins, ranging from <40◦F to >80◦F. The numbers of days in each temperature

bin are summed for each county-month in the sample. The independent variables of interest

are therefore counts of days for which a given county had a mean temperature in each bin

in a given month and year. Precipitation is measured as the monthly sum.

The third order polynomials in mean temperatures are constructed following Carleton et

al. (2018). Specifically, we first calculate a third-order polynomial in temperature at the daily

level, and then sum these three polynomial terms across the month. This approach allows

us to leverage daily variation in local temperatures in models where the unit of observation

is at the monthly level. Estimates are all interpreted as the effect of an additional day with

a given mean temperature relative to an additional day at 65◦F.

A.1.4 AC Data

We follow Barreca et al. (2016) in constructing our measure of AC penetration at the state-

year level. Data on AC penetration are derived from the 1960, 1970, and 1980 Censuses.

State-year AC penetration rates are interpolated between census years and extrapolated to

the ends of the sample. Note that AC penetration rates are also extrapolated across months

within the year to avoid discontinuous jumps at the beginning of each year.
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A.2 Empirical Strategy Details

A.2.1 Generalized CHC Interaction Model

Please see the following for a generalized empirical model for identifying the interaction

between CHC access and temperature. This model allows for J event-study indicators and

G temperature bins.

AMRcym =
J∑

j=1

G∑
g=1

φjg(CHCj
cy × Tempg

cym) +
J∑

j=1

γjCHCj
cy +

G∑
g=1

πgTempg
cym (4)

+
G∑

g=1

θg(Tempg
cym × Treatedc) +

G∑
g=1

κg(Tempg
cym × ACsy) +

G∑
g=1

(Tempg
cym × δy)

βXcym + δsy + δcm + δuy + δym + εcym

In practice, our primary specification includes the four event-study indicators (CHCt≤−2
cy ,

CHC0≤t≤4
cy , CHC5≤t≤9

cy , and CHCt≥10
cy ) used in Bailey and Goodman-Bacon (2015) and two

temperature variables (Temp<40
cym and Temp>80

cym) representing both cold and hot temperatures.

In this specification, J = 4 and G = 2, and the estimates of the eight φjg coefficients are

of primary interest. The interpretation of one of the φjg coefficients is similar to that of a

standard event-study coefficient. For example, the interpretation of the coefficient on the

interaction CHC0≤t≤4
cy × Temp>80

cym is as follows: the difference in the effect of one additional

day >80◦F on the age-adjusted mortality rate between the year prior to CHC establishment

and the period 0-4 years after. The coefficients on the pre-treatment interactions (e.g.,

CHCt≤−2
cy ×Temp>80

cym) are expected to be near zero if no differential pre-treatment trends exist

in the temperature-mortality relationship. In addition to the binned event study approach,

we also estimate a full annual event study, with indicators for each year relative to treatment

from t− 9 to t+ 15 (J = 24).

A.3 Robustness Checks and Additional Analyses

We present the estimates of a series of robustness checks and additional results in Tables A3

to A5. Table A3 presents estimates of the direct effects of temperature and the interaction

effects by age, following the categories used in Bailey and Goodman-Bacon (2015). In general,

these estimates align with our expectations: we only find evidence that CHCs mitigated the

heat-mortality relationship for individuals aged 50 and older.

Next, consider a test of whether the estimates are sensitive to forcing the treatment and

control groups to be more comparable. To construct more comparable samples, we follow
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Crump et al. (2009) and trim the sample based on the propensity of establishing a CHC. We

construct two alternative propensity scores by estimating a logit regression of a treatment

indicator on various fixed county characteristics. The first is a “Standard” P-Score based on

economic and demographic characteristics, and the second is a “Climate” P-Score based only

on climatic variables.25 With these propensity scores in hand, we then restrict the sample

to counties with P-Scores in the following three ranges: [0.05,0.95], [0.1,0.9], and [0.2,0.8].

Note that [0.1,0.9] is the range suggested by Crump et al. (2009). The results of this exercise

are presented in Table A4. Trimming using the “Standard” P-Scores dramatically limits the

sample; for example, the [0.1,0.9] trimmed sample consists of 326 counties instead of 3,041

included in the main specification. Because climate is much less useful for predicting CHC

establishment, samples trimmed based on the “Climate” P-Scores do not limit the sample as

drastically. Reassuringly, the point estimates for the >80◦F interactions are similar across

all of the various samples, although estimates with the smaller samples are considerably less

precise. Note that the large control group used in the main specification is beneficial along

several dimensions: (1) a large control group makes for more 2X2 DiD comparisons that are

un-confounded by prior treatment (Goodman-Bacon, 2018), (2) a large control group allows

for separate identification of the effects of time and time relative to treatment (Borusyak

and Jaravel, 2017), and (3) in our specific setting, the large control group also contributes

to the identification of the temperature effects.

For the sake of simplicity and precision, our main specifications only include temperature

in the contemporaneous month. If there are delayed impacts or temporal displacement (i.e.,

harvesting) in the effects of temperature exposure on mortality, then our estimates may

not fully capture the effects of interest. In the specifications presented in Table A5, we

additionally include a one-month lag for each temperature variable. The coefficient on the

lagged >80◦F interaction is insignificant and negative, suggesting the mitigating effects of

CHCs on the heat-mortality relationship are not offset by future increases in mortality. Panel

B reports the summed contemporaneous and lagged coefficients, and these are qualitatively

very similar to our main estimates.

25The “Standard” P-Scores is calculated using the following variables (measured in 1960 unless otherwise
noted): population density, population density squared, 1950-1960 % population growth, % nonwhite, % aged
0-4, % aged 21+, % aged 65+, % urban, % rural, 1959 % with income under $3,000, 1959 % with income
over $10,000, % less than four years schooling, % 12 or more years schooling, % in labor force, unemployment
rate, % male in labor force, housing units per 1,000 population, % renting, % households with plumbing, %
households with TV, % households with telephone, % households with automobile, median number of rooms,
hospitals per 1,000 population, MDs per 1,000 population, and 1957 local government expenditure per 1,000
population. The “Climate” P-Scores is calculated using the following variables: mean temperature, mean
days in the following bins: <20◦F, 20-30◦F, 30-40◦F, 40-50◦F, 50-60◦F, 70-80◦F, 80-90◦F, >90◦F, and mean
precipitation.
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B Desegregation Analysis Details

B.1 Empirical Design

Our analysis of Southern hospital desegregation proceeds in a similar manner to our analysis

of CHCs. We begin with a “replication” model that estimates the direct effects of hospital

desegregation and temperature on post-neonatal mortality. Note that while our estimation of

the effects of desegregation on post-neonatal mortality is a replication of results from Almond

et al. (2006), we are aware of no other studies that estimate the effects of temperature on

post-neonatal mortality. Our replication model is described below with subscripts r, s, y,

and m representing race, state, year, and calendar month.

PNMRrsym = γ(NWr × Desegt≥0
y ) + π1g(Tempsym) + π2(g(Tempsym) × NWr) (5)

+ µXsmy + δrsm + δsy + εrsym

In this model, PNMRrsym is the post-neonatal mortality rate (per 100,000 births) for race

r, in state s, year y and month m. An important distinction between this model and our

model for CHCs is that here the unit of observation is the race-by-location-by-time, rather

than just location-by-time as in the CHC model. Race in defined as either white or non-

white. For Southern states in this time period the non-white category is overwhelmingly

comprised of African Americans. The sample in this model is limited to Southern states

(defined as Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina,

South Carolina, Tennessee, and Virginia).

Our estimates of the effects of desegregation on mortality are derived from a simple DiD

design in which we compare non-whites and whites, before and after desegregation. The

coefficient of interest is γ, where NWr is an indicator for non-white and Desegt≥0
y is an

indicator for years 1966 and later (t = 0 is 1966). If we were not interested in simultaneously

estimating the effects of temperature on mortality, this model could be aggregated to the

race-by-time level. Estimating temperature effects requires geographical variation, however,

and thus we disaggregate to the state level. In principle the model could be estimated at

the county level, however because the denominator in the outcome is the annual number

of births, the outcome is undefined for some counties in which there were zero births for a

particular race-year.

π1 and π2 represent the effects of temperature, which are allowed to be different for the

white and non-white populations. We are primarily interested in the effects of temperature

on the non-white population (i.e., π1 + π2). g(Tempsym) is either a set of temperature bins
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or a 3rd order polynomial in temperature. Because Southern states are warmer on average

than the rest of the US, we use the number of days <50◦F to represent cold temperatures

in the binned specifications. Note that the average number of days <50◦F in the South

is approximately equal to the number of days <40◦F for the entire US. Xcym represents

precipitation controls: two indicators for monthly precipitation below the 25th percentile or

above the 75th percentile of the state-month distribution respectively.

Identification of γ in a difference-in-differences framework requires controlling for unob-

served time-invariant differences across race, and unobserved race-invariant differences over

time. This is accomplished through race-state-month fixed effects (δrsm) and state-year fixed

effects (δsy). These controls are specified to facilitate causal identification of π as well; in

particular, the race-state-month fixed effects control for differences in average temperature

and mortality across states, and allow seasonality to vary across both states and races.

The state-year fixed effects obviate the need for any additional state-level annually-varying

covariates. Standard errors are two-way clustered at the state and year-by-month levels.

B.1.1 Interaction Model

The model used to estimate the interaction between desegregation and temperature exposure

is very similar in spirit to the interaction model for CHCs, and is described below:

PNMRrsym = φ(NWr × Desegt≥0
y × g(Tempsym)) + γ(NWr × Desegt≥0

y ) (6)

+ π1g(Tempsym) + π2(g(Tempsym) × NWr) + g(Tempsym) × δy

+ µXsmy + δrsm + δsy + εrsym

This is essentially a triple-differences model in which the coefficient of interest (φ) is on

the three-way interaction. We interpret φ as the effect of desegregation on the temperature-

PNMR relationship. Similar to our model for CHCs, we are again careful to control for

fixed differences in the effects of temperature across treated and untreated groups. In this

case, race defines the treatment group, and thus Tempsym×NWr allows for these differences.

We also allow for the effect of temperature to vary over time (Tempsym × δy). Although not

included in our main specification, we can also allow the effects of temperature to vary across

AC penetration rates (Tempsmy ×ACrsy), and the results are insensitive to these additional

controls (results available upon request). The precipitation controls and fixed effects are the

same as in the replication model.
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