Online Appendix

Robustness Checks

In this section, I provide several robustness checks to ensure that the estimates are
not sensitive to model specification or other factors. Two of the two most important
checks are discussed in the paper: the estimates that use leads in temperature in
place of lags and the model estimated at the monthly level. Several other robust-
ness checks are discussed here and are presented in Tables OA1 to OA4. Before
discussing these, however, it should be mentioned that another sort of robustness
check comes in the form of a previous version of this paper, wherein all estimates
were conducted at the county-level (rather than zip-code). The estimates produced
in this previous version were quite similar to the results discussed here.

These main estimates were estimated in levels rather than logs due to the fact
that there are a significant number of zip-days with zero ED visits, especially when
the analysis is broken down into smaller categories (e.g., ED visits for infectious /
parasitic diseases). Table OA1 presents estimates of the baseline model carried out
in logs and reports estimates that are nearly identical to those carried out in levels;
because these were estimated in logs, the coefficients are not divided by the mean
of the dependent variable. This table also presents separate estimates that exclude
controls for holidays, estimates that exclude controls for the day-of-week, and es-
timates that exclude controls for precipitation. All of these estimates yield similar
results to the baseline model. Finally, this table presents a model estimated as using
a fixed-effects Poisson specification, where the outcomes are measured in counts
rather than rates (zip-code population is used as an exposure variable). The disad-
vantage of the Poisson specification is that only one set of high-dimensional fixed
effects can be included due to the potential for an incidental parameters problem;
further, standard errors must be clustered at the level of the included fixed effect.
This model includes zip-by-week and year fixed effects, and standard errors are ac-
cordingly clustered at the zip-by-week level. The standard errors are much smaller,
which is unsurprising given the fine scale at which the standard errors are clustered,
but the point estimates are very similar to those estimated in the primary analy-
sis, providing further reassurance that the main estimates are not driven by model
specification.

Because identification of the causal effects of weather in this study relies on
a suitable set of fixed effects, it is important to probe the robustness of the main
results to the specification of fixed effects. While I believe that the set of fixed
included in the baseline model strikes an optimal balance between providing a suit-
able set of controls and not asking too much of the data, there do exist other options.
Table OA?2 displays the main results for five sets of fixed effects distinct from the



baseline model. For the most part, these models produce estimates that are quite
similar to the primary estimates. One exception lies in models that include exact-
date fixed effects, in which the estimates for hot temperatures are somewhat atten-
uated and the standard errors nearly double in size. Because of the high degree of
correlation in weather across counties within California, the difficulty in estimating
models with exact-date fixed effects is unsurprising, though the inability to estimate
such models precisely is an important caveat that should be noted.

I test the robustness of the main results to an alternative set of weather sta-
tions that additionally measure humidity and wind speed. These data are from the
NCDC'’s Quality Controlled Local Climatological Data (QCLCD) system. This
smaller set of stations are typically located in airports and provide highly reliable
measurements of various weather variables, though the spatial coverage of these
stations is somewhat more limited relative to the GHCN. Using this data, I first
confirm the results of the main analysis using only temperature and precipitation.
In another regression, I add quartiles for absolute humidity, and finally I add both
humidity quartiles as well as quartiles in average wind speed. In all regressions,
the estimates are essentially identical to those estimated using the GHCN. These
estimates are presented in Table OA3 and the process by which the QCLCD data is
constructed is described below

Finally, I make use of an alternate strategy to classify admissions into more or
less deferrable categories. This strategy follows number of papers that argue that
diagnosis codes with weekend-weekday admission ratio near 2/7 are less likely to
be deferrable in nature (Dobkin, 2003; Card et al. , 2009; Doyle et al. , 2015). The
intuition behind this approach is that if a medical emergency cannot be deferred
to a later date, then the admission rate should be roughly equal across days of the
week. To employ this approach, I test the hypothesis that the weekend-weekday
admission ratio for each ICD code is equal to 2/7, and define diseases codes as
“more deferrable” or ““ less deferrable” if the absolute value of the t-statistic of this
test lies in the first or fourth quartile of the distribution of t-statistics, respectively.
These results are presented in Table OA4, and are similar to the preferred strategy
described earlier.



Additional Results

The goal of this paper has been to make headway in understanding the general re-
lationship between weather and hospital usage. While not necessarily of first-order
importance in understanding this general relationship, there are many additional
features of this relationship and dimensions of heterogeneity that can be explored.
In this section, I present a number of these additional results.

The first of these additional results uses the humidity data in the QCLCD to test
whether absolute humidity has an independent effect on hospital usage. The mod-
els tested here incorporate quartiles in absolute humidity into the baseline specifi-
cation.! Similar to the temperature variables, 30 lags in all humidity variables are
included and I report results for both the contemporaneous and cumulative effects
of humidity. The first quartile is omitted and as such coefficients should be inter-
preted as relative to the low humidity levels represented by the first quartile. These
results are reported in Table OAS. The first set of results represent all visits. These
estimates indicate that levels of humidity above the first quartile are responsible for
a small contemporaneous increase in ED visits, and a sizeable cumulative decrease.
The estimates in general imply that low levels of humidity can be dangerous and are
consistent with a literature relating influenza transmission and mortality to low hu-
midity levels (Shaman & Kohn, 2009; Barreca & Shimshack, 2012). Exploring this
further, I estimate similar models that restrict the sample to visits with either res-
piratory or non-respiratory principal diagnoses. These additional estimates, which
show a strong effect of low humidity levels on respiratory-related visits and little
impact for non-respiratory visits, further support the literature on disease transmis-
sion and humidity.

A natural question to ask is whether individuals can adapt to temperature either
through physiological or behavioral means. Focusing on behavioral adaptation, it
is possible that people who are frequently exposed to temperature extremes learn to
adapt to these temperatures and behave differently than people who are not condi-
tioned to these extremes. For example, individuals who frequently experience hot
(cold) temperatures may be induced to purchase air conditioning (heating), or take
other measures to avoid exposure to such extremes. I follow the strategy of Graff-
Zivin & Neidell (2014) to test for such adaptation. This strategy relies on separately
estimating the effects of temperature by climate region, where climate is measured
as the total number of days that fall into either the coldest or hottest temperature
bin in a given zip-code. I categorize zip-codes into above- and below-median cli-
mate groups, and I do this separately for hot and cold temperatures. The results
of this exercise are presented in Tables OA6 and OA7. The estimates do suggest
some level of adaptation, as there tend to be stronger negative impacts of both cold

I'The cutoffs for the absolute humidity quartiles are 5.49, 7.14 and 8.77.



and hot temperatures when such temperatures are experienced less frequently. Note
that the estimates for cold temperatures are somewhat more difficult to interpret as
there are almost no days that fall into the lowest temperature bin for the zip-codes
with a below-median number of cold days per year (and the standard errors are very
large); the less extreme cold weather bins, however (i.e., 40-45 and 45-50 degrees)
suggest a significantly stronger effect of cold weather relative to zip-codes with an
above-median number of cold days.

In Table OAS, I explore two additional dimensions of heterogeneity: gender
and income. First, these estimates indicate essentially no differential impact of
temperature by gender. Income heterogeneity is another dimension of interest as
lower income individuals may be less able to protect themselves from exposure to
temperature extremes through adaptation mechanisms such as the purchase of air
conditioning or heating. To explore income heterogeneity, I make use of the fact
that each patient reports their expected source of payment to get at whether this re-
lationship varies by income; I consider individuals that expect to pay with Medicaid
as relatively low income and individuals expecting to pay with private insurance as
relatively high income. Since patients in these groups differ on dimensions other
than income, this interpretation should be taken with some caution. The estimates
indicate that the Medicaid population is more strongly affected by cold tempera-
tures (27.4% cumulative effect) relative to the private insurance population (10.1%
cumulative effect). Somewhat surprisingly, the estimates for the effects of high tem-
peratures are quite similar between these two groups, though large standard errors
mean that sizeable differences cannot be rejected.

Finally, in Table OA9, I ask whether heat waves or cold waves confer any ad-
ditional impact relative to a temperature shock experienced in isolation. I use two
strategies to estimate these impacts. In the first strategy, I use a model estimated
at the daily level (similar to the baseline specification), and create two new vari-
ables indicating that each of the last two days and the present day had temperatures
falling into the under 40°F bin (cold waves) or the over 80°F bin (heat waves). The
model I estimate includes all of the same variables as the baseline specification, as
well as the cold and heat wave variables along with 30 lags in each. These variables
are intended to indicate whether the third day (or beyond) of a cold or heat wave
has any additional impact beyond the effect of a temperature shock experienced in
isolation. The results indicate that there is no additional contemporaneous effect for
either heat or cold waves; the cumulative effect for cold temperatures, however, ap-
pears to be driven by cold waves. Because this strategy is somewhat cumbersome,
I estimate a second model using monthly data that is intended to capture the same
effect. The monthly model is the same as that reported in final column of Table 3
in the paper, except that I add two additional variables that measure the number of
days in either the lowest or highest temperature bin that are part of an event lasting
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at least three days. These variables are again intended to measure whether an ad-
ditional day in each bin that is part of a heat wave or cold wave has any additional
effect beyond the impact of a day that is not part of such an event. The estimates
from this strategy are very similar to the daily model, indicating that the negative
effects of cold weather are driven by cold waves rather than cold days in isolation,
and there is no statistically significant differential effect for heat waves.



QCLCD Weather Data Construction

This section describes the process by which weather data was constructed for test-
ing the robustness of the main results to an alternative weather database, the Quality
Controlled Local Climatological Data (QCLCD). This data is only available begin-
ning in 2005, and consists of a smaller set of stations than the GHCN (the dataset
used in the main analysis) that are generally located in airports. That being said, the
quality of data from these stations is high, with a relatively small number of missing
values, information on more weather variables, and quality control procedures that
the GHCN lacks. Further, these data allow for the use of a consistent set of stations
that operate consistently between 2005 and 2013 (where the set of stations can be
different in each year using the GHCN).

To be included in the analysis, each station must have at least 95% valid daily
observations for the entire period 2005-2013. This process ensures that stations
must have observations in all years, and results in a total of 66 stations through-
out California. To fill in the the missing values, I use a procedure to that used in
(Auffhammer & Kellogg, 2011). For each station and weather variable (i.e., temper-
ature, precipitation, dew point temperature, etc.), I regress that variable on the value
of the same variable in each the 10 closest stations, as well as month fixed effects.
The predicted values from these regressions are used to interpolate any missing val-
ues. If a value is missing from one of the 10 closest stations, then I repeat this
process using the 9 closest stations. This process is repeated until only the closest
station is used. Unsurprisingly, the predicted value from the 10 nearest stations is
used the vast majority of the time, given that only stations with 95% non-missing
observations are included. This process fills in the remainder of the data, and yields
a station-by-day file. From there, the same inverse-distance weighting procedure is
used to map station-level data into county-level data (also with a 100km radius).



Climate Forecasts

In order to estimate the impacts of climate change, I require predictions on the
change in the number of days (between now and some point in the future — I choose
to focus on end-of-century) that fall into each temperature bin, for each county in
my sample. I use predictions based on the Hadley Centre’s Global Environment
Model version 2 (GEM2-ES). This is one of the major climate models used in the
IPCC’s Fifth Assessment Report. This model is available for four “Representative
Concentration Pathways” (RCP’s), which represent different pathways for emis-
sions (driven by population changes, policy decisions, etc.) and thus greenhouse
gas concentrations. I focus on RCP8.5, which simulates a continuation of current
emission growth rates (i.e., “business-as-usual”). This model produces daily pre-
dictions of temperature (and other climate variables) between 1860 and 2099 for
grid-points across the globe.

I restrict the sample to grid-points near California and focus on changes in cli-
mate between now and the end of century. First, for each grid-point, I calculate the
average number of days per year in each temperature bin for the period 1980-2009.
I then repeat this process for the period 2070-2099. Then, for each grid-point and
temperature bin, I take the difference between these averages. The result is, for
each grid-point, the predicted change in the average number of days per year that
falls into each temperature bin. To aggregate grid-points to counties, I use the same
inverse-distance weighting procedure used in ??, but with grid-points in place of
weather stations. The result is a dataset that indicates, for each county, the pre-
dicted changes in the number of days that fall into each temperature bin between
the “current” climate (1980-2009) and the end-of-century climate (2070-2099).



Table OA1: Robustness Checks — Specification Checks

(1) (2) 3) “4) )
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.
<40 -0.059%x  0.098+x -0.062%x 0.115%x -0.061%x 0.110%xx -0.070%x 0.100 -0.055%+  0.132xx
(0.006) (0.036) (0.008) (0.037) (0.007) (0.036) (0.008) (0.041) (0.002) (0.008)
40-45 -0.046xx  0.079 -0.047xx  0.065 -0.046xx  0.065 -0.052%+  0.046 -0.046%x  0.038:xx
(0.004) (0.041) (0.005) (0.053) (0.005) (0.054) (0.005) (0.055) (0.001) (0.005)
75-80 0.028«x  0.030 0.031%x  0.041%  0.028%«x 0.041x  0.029x%x 0.040%  0.031%x  0.066x%x
(0.002)  (0.020) (0.003) (0.019) (0.002) (0.019) (0.002) (0.019) (0.001) (0.004)
>80 0.034xx  0.039 0.035%x  0.050%  0.034%x 0.051%  0.035%x 0.050%  0.036%x  0.056x%x
(0.003) (0.021) (0.004) (0.021) (0.003) (0.021) (0.003) (0.021) (0.001)  (0.004)
Mean Dep. Var. 77.1 77.1 77.1 77.1 77.1
# Admissions 94,225,592 94,225,592 94,225,592 94,225,592 94,225,592
N 3,905,239 3,905,239 3,905,239 3,905,239 3,905,239
Logs X - - - -
Exclude Day-of-Week - X - - -
Exclude Holidays - - X - -
No Precip. - - - X -
Poisson - - - - X

Note — Standard errors are two-way clustered at the county and year-month levels. All regressions are weighted by total zip-code population. Regressions are estimated in levels, but reported in percent

changes (the level effect divided by the reported mean dependent variable). ** significant at the 1% level. * significant at the 5% level.



Table OA2: Robustness Checks — Fixed Effects

(D) 2) 3) “4) &)
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.
<40 -0.072%%  0.078%  -0.064xx 0.147+x -0.039%x 0.131%  -0.065%* 0.105%% -0.041*x 0.132x
(0.008)  (0.031) (0.008) (0.045) (0.008) (0.058) (0.009) (0.038) (0.009) (0.059)
40-45 -0.055%x -0.025 -0.051%x -0.004 -0.038%x -0.032 -0.048xx  0.058 -0.039%x -0.033
(0.004)  (0.040) (0.005) (0.055) (0.005) (0.060) (0.006) (0.056) (0.005) (0.061)
75-80 0.029%x  0.063*xx  0.030%* 0.060%*x 0.025%x 0.060 0.031xx  0.041x  0.025%xx  0.060
(0.003) (0.019) (0.003) (0.023) (0.003) (0.034) (0.003) (0.019) (0.003) (0.034)
>80 0.030«x  0.016 0.035%x  0.040 0.027%x  0.023 0.036%x  0.051«  0.026xx 0.023
(0.004) (0.022) (0.003) (0.024) (0.004) (0.042) (0.004) (0.021) (0.004) (0.042)
Mean Dep. Var. 77.1 77.1 77.1 77.1 77.1
# Admissions 94,225,592 94,225,592 94,225,592 94,225,592 94,225,592
N 3,905,239 3,905,239 3,905,239 3,905,239 3,905,239
Zip X - - - -
Year X X - - -
Month X - - - -
Zip-Month - X - - -
Zip-Week - - X - -
Exact Date - - X - X
County-Year - - - X -
Zip-Day of Year - - - X X

Note — Standard errors are two-way clustered at the county and year-month levels. All regressions are weighted by total zip-code population. Regressions are estimated in levels, but reported
in percent changes (the level effect divided by the reported mean dependent variable). ** significant at the 1% level. * significant at the 5% level.



Table OA3: Robustness Checks — Alternate Weather Data (QCLCD)

) 2) 3)
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.
<40 -0.049%x  0.118+«  -0.046xx 0.091 -0.045%x  0.087
(0.006) (0.059) (0.007)  (0.063) (0.007)  (0.064)
40-45 -0.044xx  0.093 -0.040%+  0.063 -0.040%x  0.058
(0.004) (0.055) (0.005) (0.057) (0.005) (0.057)
75-80 0.032%x  0.054%x  0.034%x  0.053%+  0.031xx  0.053%x
(0.003) (0.015) (0.003) (0.013) (0.003) (0.013)
>80 0.042xx  0.077xx  0.044%x  0.077+x  0.040%x  0.077xx
(0.003) (0.018) (0.003) (0.017) (0.004) (0.017)
Mean Dep. Var. 76.4 76.4 76.4
# Admissions 80,459,816 80,459,816 80,459,816
N 3,142,125 3,142,125 3,142,125
Precip. Only X X X
Add Humidity - X X
Add Windspeed - - X

Note — This table probes the robustness of the main results to the use of another weather dataset. The first column reports
estimates that duplicate the main result, but using weather data from the QCLCD rather than GHCN. The second column
adds humidity quartiles. The third column adds humidity quartiles and windspeed quartiles. Standard errors are two-way
clustered at the county and year-month levels. All regressions are weighted by total zip-code population. Regressions are
estimated in levels, but reported in percent changes (the level effect divided by the reported mean dependent variable). **
significant at the 1% level. * significant at the 5% level.
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Table OA4:

Deferrability — Alternate Classification

<40

40-45

75-80

>80

Mean Dep. Var.

# Admissions
N

More Deferrable
Contemp. Cumul.
-0.065%*%  0.170%x
(0.011) (0.041)
-0.044%x 0.115
(0.007)  (0.073)
0.026%x  0.064x%
(0.003) (0.026)
0.030*%x  0.065x%
(0.003)  (0.027)
13.9
16939112
3905239

Less Deferrable
Contemp. Cumul.
-0.058*%  0.098xx
(0.006)  (0.021)
-0.042%x  0.050
(0.004)  (0.037)
0.030*x 0.031x%
(0.003) (0.015)
0.036xx  0.039%
(0.003) (0.018)
10.6
12926923
3905239

Note — Standard errors are two-way clustered at the county and year-month levels. All re-
gressions are weighted by total zip-code population. Regressions are estimated in levels,
but reported in percent changes (the level effect divided by the reported mean dependent
variable). ** significant at the 1% level. * significant at the 5% level.

Table OAS5: Impacts of Humidity

All Visits Respiratory Non-Respiratory
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.
Quartile 2 0.006%x -0.034%x  0.001 -0.208+«  0.007%x -0.009
(0.001)  (0.015) (0.006) (0.083) (0.001) (0.010)
Quartile 3 0.010%x -0.029 0.005 -0.159 0.011xx -0.010
(0.001) (0.018)  (0.005) (0.088) (0.001) (0.012)
Quartile 4 0.012%x  -0.024 0.003 -0.117 0.014xx -0.011
(0.002) (0.023) (0.007)  (0.092) (0.002) (0.018)
Mean Dep. Var. 76.0 9.7 66.3
# Admissions 80,718,016 10,272,140 70,445,880
N 3,142,125 3,142,125 3,142,125

Note — This table reports results from the same model including all temperature variables as well as quartiles in absolute
humidity. The first quartile is omitted and thus all estimate should be interpreted relative to that. The cutoffs in absolute
humidity corresponding for the quartiles are 5.49, 7.14 and 8.77. Standard errors are two-way clustered at the county and
year-month levels. All regressions are weighted by total zip-code population. Regressions are estimated in levels, but
reported in percent changes (the level effect divided by the reported mean dependent variable). ** significant at the 1%
level. * significant at the 5% level.
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Table OA6: Adaptation (Cold Regions)

Below Median (Less Cold) Above Median (More Cold)

Contemp. Cumul. Contemp. Cumul.
<40 -0.070xx -0.106 -0.058 0.078x
(0.013) (0.179) (0.007) (0.036)
40-45 -0.042xx 0.165x -0.044 5% 0.026
(0.005) (0.076) (0.005) (0.047)
Mean Dep. Var. 72.2 85.0
# Visits 54,827,928 39,397,664
N 2,162,884 1,742,355

The categories are zip-codes that are above or below the median number of cold days (<40) per year. Standard
errors are two-way clustered at the county and year-month levels. All regressions are weighted by total zip-code
population. Regressions are estimated in levels, but reported in percent changes (the level effect divided by the
reported mean dependent variable). ** significant at the 1% level. * significant at the 5% level.

Table OA7: Adaptation (Hot Regions)

Below Median (Less Hot) Above Median (More Hot)

Contemp. Cumul. Contemp. Cumul.
75-80 0.027x 0.050% 0.029%x 0.033
(0.003) (0.020) (0.003) (0.020)
>80 0.038:x 0.067xx 0.034x%x 0.045x
(0.004) (0.026) (0.003) (0.021)
Mean Dep. Var. 73.7 80.4
# Visits 44,117,396 50,108,192
N 1,920,031 19,852,081

The categories are zip-codes that are above or below the median number of hot days (>80) per year. Standard
errors are two-way clustered at the county and year-month levels. All regressions are weighted by total zip-
code population. Regressions are estimated in levels, but reported in percent changes (the level effect divided
by the reported mean dependent variable). ** significant at the 1% level. * significant at the 5% level.
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Table OAS8: Insurance Status and Gender

Medicaid Private Ins. Male Female
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.
<40 -0.054%x  0.274xx  -0.059xx 0.101 -0.064%x  0.111xx  -0.058+x  0.110x%x
(0.008) (0.076) (0.010) (0.059) (0.008) (0.036) (0.007)  (0.038)
40-45 -0.035%+  0.225%  -0.051%x 0.039 -0.051xx  0.055 -0.040xx 0.076
(0.007)  (0.096) (0.005) (0.046) (0.005) (0.053) (0.005) (0.055)
75-80 0.028+x  0.083 0.028«x  0.068%x  0.032%x 0.040%x  0.025%xx  0.040%
(0.005) (0.045) (0.003) (0.025) (0.003) (0.019) (0.003) (0.019)
>80 0.035«x  0.070 0.032%x  0.077*x  0.040%x  0.055%x 0.030%*x  0.045%
(0.008)  (0.073) (0.003) (0.027) (0.004) (0.020) (0.003) (0.022)
Mean Dep. Var. 21.0 24.9 35.1 42.0
# Admissions 25,650,384 30,445,238 42,867,528 51,322,740
N 3,905,239 3,905,239 3,905,239 3,905,239

Note — Standard errors are two-way clustered at the county and year-month levels. All regressions are weighted by total zip-code population. Regressions
are estimated in levels, but reported in percent changes (the level effect divided by the reported mean dependent variable). ** significant at the 1% level. *
significant at the 5% level.



Table OA9: Cold Waves and Heat Waves

Daily Model Monthly Model

Contemp. Cumul. Cumul.
<40 -0.055xx  0.051 0.003
(0.006)  (0.052) (0.074)
Cold Wave (3+ Days) -0.004 0.136x% 0.197xx
(0.002)  (0.067) (0.075)
>80 0.034%%  0.090%x* 0.106x
(0.003) (0.024) (0.044)
Heat Wave (3+ Days) -0.002 -0.049 -0.054
(0.002)  (0.036) (0.033)
Mean Dep. Var. 77.1 2345.6
# Admissions 94,225,592 94,330,160
N 3,905,239 128,575

Note — The “<40” and “>80” are intended to measure the effect of an additional day in
each bin, when the day is not part of a heat or cold wave event lasting at least three days.
The “Cold Wave (3+ Days)” and “Heat Wave (3+ Days)” variables are intended to measure
the differential effect of an additional day in each bin when the day is part of such an event.
Standard errors are two-way clustered at the county and year-month levels. All regressions
are weighted by total zip-code population. Regressions are estimated in levels, but reported
in percent changes (the level effect divided by the reported mean dependent variable). **
significant at the 1% level. * significant at the 5% level.
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Full Results (All Temperature Bins)
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Table OA10: Baseline Results

<40

40-45

45-50

50-55

55-60

65-70

70-75

75-80

>80

Mean Dep. Var.
# Admissions
N

Outpatient Emerg.
Inpatient Emerg.

Inpatient Non-Emerg.

o) @ 3 @
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.
-0.061 0.110 -0.064 0.121 -0.040 0.053 -0.001 -0.008
(0.007)  (0.036) (0.008) (0.042) (0.005) (0.025) (0.010) (0.036)
-0.045 0.064 -0.048 0.070 -0.029 0.036 -0.002 0.009
(0.005) (0.054) (0.005) (0.059) (0.004) (0.032) (0.006) (0.017)
-0.036 0.035 -0.039 0.036 -0.023 0.033 0.006 -0.007
(0.004) (0.020) (0.004) (0.023) (0.003) (0.015) (0.005) (0.016)
-0.024 0.016 -0.025 0.018 -0.017 0.002 -0.000 -0.016
(0.002) (0.014) (0.002) (0.016) (0.002) (0.008) (0.004) (0.012)
-0.012 0.003 -0.013 0.007 -0.012 -0.019 -0.000 -0.007
(0.001) (0.012) (0.001) (0.013) (0.002) (0.010) (0.002) (0.011)
0.009 -0.009 0.010 -0.005 0.008 -0.030 0.000 -0.009
(0.001) (0.010) (0.001) (0.010) (0.001) (0.012) (0.002)  (0.009)
0.021 0.013 0.021 0.018 0.017 -0.018 0.005 0.004
(0.002) (0.011) (0.002) (0.012) (0.002) (0.010) (0.002) (0.012)
0.028 0.041 0.029 0.047 0.026 0.004 0.004 0.001
(0.002) (0.019) (0.003) (0.020) (0.002) (0.014) (0.003) (0.011)
0.035 0.051 0.035 0.054 0.034 0.033 0.007 0.015
(0.003) (0.021) (0.003) (0.022) (0.004) (0.017) (0.005) (0.015)
77.1 65.0 12.1 14.7
94,225,592 79,491,760 14,733,830 18,020,504
3,905,239 3,905,239 3,905,239 3,905,239
X X - -
X - X -
- - - X
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Table OA11: Cumulative Effects

30 Days (Baseline) 40 Days 50 Days 60 Days ~ Monthly Model

<40

40-45

45-50

50-55

55-60

65-70

70-75

75-80

>80

Mean Dep. Var.

# Admissions
N

0.110 0.150 0.167 0.170 0.153
(0.036) (0.042) (0.049) (0.056) (0.058)
0.064 0.083 0.100 0.089 0.088
(0.054) (0.058) (0.057) (0.056) (0.065)
0.035 0.038 0.037 0.029 0.048
(0.020) (0.023) (0.024) (0.026) (0.029)
0.016 0.015 0.014 0.010 0.020
(0.014) (0.015) (0.017) (0.019) (0.020)
0.003 0.005 0.013 0.011 0.008
(0.012) (0.013) (0.016) (0.018) (0.017)
-0.009 -0.014 -0.017 -0.023 -0.015
(0.010) (0.011) (0.013) (0.015) (0.016)
0.013 0.008 0.004 -0.005 0.010
(0.011) (0.013) (0.014) (0.017) (0.018)
0.041 0.045 0.044 0.041 0.047
(0.019) (0.022) (0.023) (0.026) (0.028)
0.051 0.049 0.048 0.042 0.046
(0.021) (0.023) (0.026) (0.029) (0.033)

77.1 77.1 77.1 77.1 2,345.6

94,009,920 94,009,920 94,009,920 94,009,920 94,330,160
3,891,199 3,891,199 3,891,199 3,891,199 128,575
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Table OA12: Age Heterogeneity

<40

40-45

45-50

50-55

55-60

65-70

70-75

75-80

>80

Mean Dep. Var.

# Admissions
N

Under 5
Contemp. Cumul.
-0.070 0.277
(0.014)  (0.109)
-0.064 0.137
(0.010)  (0.108)
-0.055 0.078
(0.007)  (0.058)
-0.042 0.047
(0.006)  (0.039)
-0.019 0.050
(0.003)  (0.034)
0.016 0.002
(0.003)  (0.023)
0.032 0.029
(0.005)  (0.029)
0.048 0.074
(0.008)  (0.051)
0.064 0.086
(0.012)  (0.053)
118.4
10,322,464
3,905,239

5-14
Contemp.
-0.117
(0.017)
-0.083
(0.011)
-0.061
(0.008)
-0.042
(0.005)
-0.022
(0.003)
0.010
(0.003)
0.021
(0.005)
0.024
(0.007)
0.021
(0.008)
48.1
8,105,7
3,905,2

Cumul.
0.222
(0.108)
0.128
(0.121)
0.113
(0.066)
0.014
(0.043)
-0.013
(0.025)
-0.044
(0.031)
-0.005
(0.035)
0.098
(0.042)
0.095
(0.047)

56
39

15-24
Contemp. Cumul.
-0.061 0.102
(0.009)  (0.049)
-0.037 0.043
(0.005)  (0.060)
-0.031 -0.003
(0.004)  (0.022)
-0.017 -0.016
(0.003)  (0.018)
-0.011 -0.018
(0.003)  (0.014)
0.008 -0.010
(0.002)  (0.012)
0.020 0.016
(0.003)  (0.015)
0.029 0.037
(0.003)  (0.019)
0.039 0.034
(0.004)  (0.024)
71.3
12,911,893

3,905,239

25-64
Contemp. Cumul.
-0.049 0.069
(0.007)  (0.036)
-0.037 0.034
(0.005)  (0.043)
-0.029 0.005
(0.004) (0.018)
-0.019 0.006
(0.002)  (0.014)
-0.010 -0.004
(0.001)  (0.012)
0.006 -0.005
(0.001)  (0.010)
0.015 0.009
(0.002)  (0.012)
0.022 0.035
(0.003)  (0.020)
0.027 0.040
(0.005)  (0.024)
71.3
45,855,312
3,905,239

Over 64
Contemp. Cumul.
-0.056 0.115
(0.007)  (0.043)
-0.049 0.100
(0.006)  (0.036)
-0.038 0.083
(0.004) (0.016)
-0.024 0.052
(0.002)  (0.010)
-0.014 0.015
(0.002)  (0.008)
0.012 -0.017
(0.001)  (0.010)
0.027 0.013
(0.002)  (0.010)
0.034 0.007
(0.003)  (0.012)
0.037 0.027
(0.004) (0.018)
126.4
17,030,166
3,905,239
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Table OA13: Deferrability

More Deferrable Less Deferrable
Contemp. Cumul. Contemp. Cumul.
<40 -0.065 0.170 -0.058 0.098
(0.011) (0.041) (0.006) (0.021)
40-45 -0.044 0.115 -0.042 0.050
(0.007) (0.073) (0.004) (0.037)
45-50 -0.036 0.069 -0.029 0.044
(0.006) (0.030) (0.003) (0.019)
50-55 -0.025 0.031 -0.019 0.021
(0.003) (0.019) (0.002) (0.010)
55-60 -0.012 0.011 -0.011 0.007
(0.002) (0.017) (0.002)  (0.007)
65-70 0.007 -0.014 0.011 -0.006
(0.002) (0.014) (0.002)  (0.007)
70-75 0.018 0.020 0.020 0.004
(0.003) (0.017) (0.002) (0.010)
75-80 0.026 0.064 0.030 0.031
(0.003) (0.026) (0.003) (0.015)
>80 0.030 0.065 0.036 0.039
(0.003) (0.027) (0.003) (0.018)
Mean Dep. Var. 13.9 10.6
# Admissions 16,939,112 12,926,923
N 3,905,239 3,905,239




Table OA14: Costs

All Emergency-Related Emergency Inpatient Emergency Outpatient

0¢

<40 12176 8542 3406
(10877) (10202) (1422)
40-45 11364 8543 2573
(9998) (8705) (1884)
45-50 14676 13620 842
(4094) (3749) (830)
50-55 1728 1009 558
(2587) (2456) (613)
55-60 -2347 2711 285
(2240) (1988) (439)
65-70 -7334 -7418 133
(2537) (2405) (344)
70-75 -2712 -3775 994
(2696) (2516) 479)
75-80 1639 -499 2086
(3732) (3270) (803)
>80 7994 5498 2301
(3773) (3310) (882)
Mean Dep. Var. $230,846 $184916 $45583
# Visits 94,225,592 14,733,830 78,745,280

N 3,905,239 3,905,239 3,905,239
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Table OA15: Robustness Checks — Specification Checks

@ @ 3 @ ®
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.

<40 -0.059 0.098 -0.062 0.115 -0.061 0.110 -0.070 0.100 -0.055 0.132
(0.006) (0.036) (0.008) (0.037) (0.007) (0.036) (0.008) (0.041) (0.002) (0.008)

40-45 -0.046 0.079 -0.047 0.065 -0.046 0.065 -0.052 0.046 -0.046 0.038
(0.004) (0.041) (0.005) (0.053) (0.005) (0.054) (0.005) (0.055) (0.001) (0.005)

45-50 -0.038 0.033 -0.036 0.036 -0.036 0.036 -0.042 0.024 -0.036 0.068
(0.003) (0.023) (0.004) (0.021) (0.004) (0.020) (0.004) (0.020) (0.001)  (0.004)

50-55 -0.025 0.027 -0.023 0.016 -0.024 0.015 -0.028 0.002 -0.024 0.023
(0.002) (0.013) (0.002) (0.014) (0.002) (0.014) (0.003) (0.014) (0.001) (0.003)

55-60 -0.013 0.006 -0.013 0.003 -0.013 0.003 -0.014 -0.001 -0.012 0.017
(0.001) (0.013) (0.001) (0.012) (0.001) (0.012) (0.001) (0.012) (0.001)  (0.004)

65-70 0.009 -0.018 0.010 -0.008 0.009 -0.008 0.010 -0.007 0.009 -0.014
(0.001) (0.013) (0.001) (0.010) (0.001) (0.010) (0.001) (0.010) (0.001) (0.003)

70-75 0.022 0.023 0.022 0.013 0.020 0.013 0.021 0.012 0.022 0.031
(0.001) (0.013) (0.002) (0.011) (0.002) (0.011) (0.002) (0.011) (0.001) (0.004)

75-80 0.028 0.030 0.031 0.041 0.028 0.041 0.029 0.040 0.031 0.066
(0.002)  (0.020) (0.003) (0.019) (0.002) (0.019) (0.002) (0.019) (0.001) (0.004)

>80 0.034 0.039 0.035 0.050 0.034 0.051 0.035 0.050 0.036 0.056
(0.003) (0.021) (0.004) (0.021) (0.003) (0.021) (0.003) (0.021) (0.001)  (0.004)

Mean Dep. Var. 77.1 77.1 77.1 77.1 77.1

# Admissions 94,225,592 94,225,592 94,225,592 94,225,592 94,225,592

N 3,905,239 3,905,239 3,905,239 3,905,239 3,905,239

Logs X - - - -

Exclude Day-of-Week - X - - -

Exclude Holidays - - X - -

No Precip. - - - X -

Poisson - - - - X
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Table OA16: Robustness Checks — Fixed Effects

@ #) 3 @ ®)
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.

<40 -0.072 0.078 -0.064 0.147 -0.039 0.131 -0.065 0.105 -0.041 0.132
(0.008) (0.031) (0.008) (0.045) (0.008) (0.058) (0.009) (0.038) (0.009) (0.059)

40-45 -0.055 -0.025 -0.051 -0.004 -0.038 -0.032 -0.048 0.058 -0.039 -0.033
(0.004)  (0.040) (0.005) (0.055) (0.005) (0.060) (0.006) (0.056) (0.005) (0.061)

45-50 -0.038 0.061 -0.036 0.065 -0.027 0.047 -0.037 0.028 -0.027 0.046
(0.004) (0.022) (0.004) (0.018) (0.004) (0.034) (0.005) (0.022) (0.004) (0.035)

50-55 -0.024 0.021 -0.024 0.012 -0.019 0.005 -0.025 0.012 -0.019 0.005
(0.002)  (0.009) (0.002) (0.011) (0.003) (0.024) (0.003) (0.014) (0.003) (0.024)

55-60 -0.012 0.010 -0.012 0.007 -0.011 0.005 -0.013 -0.001 -0.011 0.005
(0.001) (0.011) (0.001) (0.013) (0.001) (0.018) (0.001) (0.012) (0.001) (0.018)

65-70 0.010 -0.003 0.009 -0.015 0.008 -0.008 0.010 -0.008 0.007 -0.008
(0.001) (0.009) (0.001) (0.011) (0.001) (0.017) (0.001) (0.010) (0.001) (0.017)

70-75 0.021 0.018 0.021 0.017 0.018 0.041 0.023 0.012 0.017 0.041
(0.002) (0.013) (0.002) (0.014) (0.002) (0.020) (0.002) (0.012) (0.002) (0.020)

75-80 0.029 0.063 0.030 0.060 0.025 0.060 0.031 0.041 0.025 0.060
(0.003) (0.019) (0.003) (0.023) (0.003) (0.034) (0.003) (0.019) (0.003) (0.034)

>80 0.030 0.016 0.035 0.040 0.027 0.023 0.036 0.051 0.026 0.023
(0.004) (0.022) (0.003) (0.024) (0.004) (0.042) (0.004) (0.021) (0.004) (0.042)

Mean Dep. Var. 77.1 77.1 77.1 77.1 77.1

# Admissions 94,225,592 94,225,592 94,225,592 94,225,592 94,225,592

N 3,905,239 3,905,239 3,905,239 3,905,239 3,905,239

Zip X - - - -

Year X X - - -

Month X - - - -

Zip-Month - X - - -

Zip-Week - - X - -

Exact Date - - X - X

County-Year - - - X -

Zip-Day of Year - - - X X




Table OA17: Robustness Checks — Alternate Weather Data (QCLCD)

0] @ 3
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.

<40 -0.049 0.118 -0.046 0.091 -0.045 0.087
(0.006) (0.059) (0.007)  (0.063) (0.007)  (0.064)

40-45 -0.044 0.093 -0.040 0.063 -0.040 0.058
(0.004)  (0.055) (0.005) (0.057) (0.005) (0.057)

45-50 -0.035 0.040 -0.033 0.019 -0.032 0.020
(0.004)  (0.015) (0.004) (0.021) (0.004) (0.021)

50-55 -0.024 0.025 -0.024 0.015 -0.023 0.015
(0.002) (0.013) (0.003) (0.017) (0.003) (0.017)

55-60 -0.012 0.010 -0.012 0.009 -0.011 0.009
(0.001) (0.010) (0.001) (0.010) (0.001) (0.010)

65-70 0.011 0.004 0.012 0.002 0.011 0.002
(0.001) (0.012) (0.001) (0.010) (0.001) (0.010)

70-75 0.022 0.015 0.024 0.014 0.022 0.013
(0.002) (0.011) (0.002) (0.011) (0.002) (0.011)

75-80 0.032 0.054 0.034 0.053 0.031 0.053
(0.003) (0.015) (0.003) (0.013) (0.003) (0.013)

>80 0.042 0.077 0.044 0.077 0.040 0.077
(0.003) (0.018) (0.003) (0.017) (0.004) (0.017)

Mean Dep. Var. 76.4 76.4 76.4

# Admissions 80,459,816 80,459,816 80,459,816

N 3,142,125 3,142,125 3,142,125

Precip. Only X X X

Add Humidity - X X

Add Windspeed - - X

23
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Table OA18: Deferrability — Alternate Classification

More Deferrable Less Deferrable
Contemp. Cumul. Contemp. Cumul.
<40 -0.065 0.170 -0.058 0.098
(0.011) (0.041) (0.006) (0.021)
40-45 -0.044 0.115 -0.042 0.050
(0.007) (0.073) (0.004) (0.037)
45-50 -0.036 0.069 -0.029 0.044
(0.006) (0.030) (0.003) (0.019)
50-55 -0.025 0.031 -0.019 0.021
(0.003) (0.019) (0.002) (0.010)
55-60 -0.012 0.011 -0.011 0.007
(0.002) (0.017) (0.002)  (0.007)
65-70 0.007 -0.014 0.011 -0.006
(0.002) (0.014) (0.002)  (0.007)
70-75 0.018 0.020 0.020 0.004
(0.003) (0.017) (0.002) (0.010)
75-80 0.026 0.064 0.030 0.031
(0.003) (0.026) (0.003) (0.015)
>80 0.030 0.065 0.036 0.039
(0.003) (0.027) (0.003) (0.018)
Mean Dep. Var. 13.9 10.6
# Admissions 16939112 12926923
N 3905239 3905239




Table OA19: Adaptation (Cold Regions)

Below Median (Less Cold) Above Median (More Cold)

Contemp. Cumul. Contemp. Cumul.
<40 -0.070 -0.106 -0.058 0.078
(0.013) (0.179) (0.007) (0.036)
40-45 -0.042 0.165 -0.044 0.026
(0.005) (0.076) (0.005) (0.047)
45-50 -0.037 0.057 -0.034 0.004
(0.004) (0.029) (0.004) (0.030)
Mean Dep. Var. 72.2 85.0
# Visits 54,827,928 39,397,664
N 2,162,884 1,742,355
Table OA20: Adaptation (Hot Regions)
Below Median (Less Hot) Above Median (More Hot)
Contemp. Cumul. Contemp. Cumul.
70-75 0.019 0.004 0.021 0.013
(0.002) (0.012) (0.002) (0.014)
75-80 0.027 0.050 0.029 0.033
(0.003) (0.020) (0.003) (0.020)
>80 0.038 0.067 0.034 0.045
(0.004) (0.026) (0.003) (0.021)
Mean Dep. Var. 73.7 80.4
# Visits 44,117,396 50,108,192
N 1,920,031 19,852,081
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Table OA21: Insurance Status and Gender

Medicaid Private Ins. Male Female
Contemp. Cumul. Contemp. Cumul. Contemp. Cumul. Contemp. Cumul.
<40 -0.054 0.274 -0.059 0.101 -0.064 0.111 -0.058 0.110
(0.008) (0.076) (0.010) (0.059) (0.008) (0.036) (0.007)  (0.038)
40-45 -0.035 0.225 -0.051 0.039 -0.051 0.055 -0.040 0.076
(0.007)  (0.096) (0.005) (0.046) (0.005) (0.053) (0.005) (0.055)
45-50 -0.027 0.127 -0.042 0.023 -0.043 0.035 -0.031 0.036
(0.006)  (0.048) (0.004) (0.025) (0.004) (0.022) (0.004) (0.020)
50-55 -0.020 0.068 -0.026 0.025 -0.027 0.012 -0.020 0.024
(0.004) (0.040) (0.002) (0.018) (0.002) (0.014) (0.002) (0.014)
55-60 -0.013 0.015 -0.012 0.011 -0.014 0.004 -0.011 0.002
(0.002) (0.025) (0.002) (0.015) (0.001) (0.011) (0.001) (0.012)
65-70 0.007 -0.008 0.011 0.009 0.012 -0.003 0.007 -0.012
(0.002) (0.028) (0.002) (0.015) (0.001) (0.009) (0.001) (0.010)
70-75 0.019 0.014 0.021 0.040 0.024 0.012 0.018 0.011
(0.004)  (0.036) (0.002) (0.016) (0.002) (0.011) (0.002) (0.012)
75-80 0.028 0.083 0.028 0.068 0.032 0.040 0.025 0.040
(0.005) (0.045) (0.003) (0.025) (0.003) (0.019) (0.003) (0.019)
>80 0.035 0.070 0.032 0.077 0.040 0.055 0.030 0.045
(0.008)  (0.073) (0.003) (0.027) (0.004) (0.020) (0.003) (0.022)
Mean Dep. Var. 21.0 24.9 35.1 42.0
# Admissions 25,650,384 30,445,238 42,867,528 51,322,740
N 3,905,239 3,905,239 3,905,239 3,905,239
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